• Title/Summary/Keyword: recursive

Search Result 1,608, Processing Time 0.029 seconds

Design of a New VSS-Adaptive Filter for a Potential Application of Active Noise Control to Intake System (흡기계 능동소음제어를 위한 적응형 필터 알고리즘의 개발)

  • Kim, Eui-Youl;Kim, Ho-Wuk;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.231-239
    • /
    • 2009
  • The filtered-x LMS (FX-LMS) algorithm has been applied to the active noise control (ANC) system in an acoustic duct. This algorithm is designed based on the FIR (finite impulse response) filter, but it has a slow convergence problem because of a large number of zero coefficients. In order to improve the convergence performance, the step size of the LMS algorithm was modified from fixed to variable. However, this algorithm is still not suitable for the ANC system of a short acoustic duct since the reference signal is affected by the backward acoustic wave propagated from a secondary source. Therefore, the recursive filteredu LMS algorithm (FU-LMS) based on infinite impulse response (IIR) is developed by considering the backward acoustic propagation. This algorithm, unfortunately, generally has a stability problem. The stability problem was improved by using an error smoothing filter. In this paper, the recursive LMS algorithm with variable step size and smoothing error filter is designed. This recursive LMS algorithm, called FU-VSSLMS algorithm, uses an IIR filter. With fast convergence and good stability, this algorithm is suitable for the ANC system in a short acoustic duct such as the intake system of an automotive. This algorithm is applied to the ANC system of a short acoustic duct. The disturbance signals used as primary noise source are a sinusoidal signal embedded in white noise and the chirp signal of which the instantaneous frequency is variable. Test results demonstrate that the FU-VSSLMS algorithm has superior convergence performance to the FX-LMS algorithm and FX-LMS algorithm. It is successfully applied to the ANC system in a short duct.

  • PDF

Recursive SPIHT(Set Partitioning in Hierarchy Trees) Algorithm for Embedded Image Coding (내장형 영상코딩을 위한 재귀적 SPIHT 알고리즘)

  • 박영석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.7-14
    • /
    • 2003
  • A number of embedded wavelet image coding methods have been proposed since the introduction of EZW(Embedded Zerotree Wavelet) algorithm. A common characteristic of these methods is that they use fundamental ideas found in the EZW algorithm. Especially, one of these methods is the SPIHT(Set Partitioning in Hierarchy Trees) algorithm, which became very popular since it was able to achieve equal or better performance than EZW without having to use an arithmetic encoder. In this paper We propose a recursive set partitioning in hierarchy trees(RSPIHT) algorithm for embedded image coding and evaluate it's effectiveness experimentally. The proposed RSPIHT algorithm takes the simple and regular form and the worst case time complexity of O(n). From the viewpoint of processing time, the RSPIHT algorithm takes about 16.4% improvement in average than the SPIHT algorithm at T-layer over 4 of experimental images. Also from the viewpoint of coding rate, the RSPIHT algorithm takes similar results at T-layer under 7 but the improved results at other T-layer of experimental images.

  • PDF

Model-Prediction-based Collision-Avoidance Algorithm for Excavators Using the RLS Estimation of Rotational Inertia (회전관성의 순환최소자승 추정을 이용한 모델 예견 기반 굴삭기의 충돌회피 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Jaho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • This paper proposes a model-prediction-based collision-avoidance algorithm for excavators for which the recursive-least-squares (RLS) estimation of the excavator's rotational inertia is used. To estimate the rotational inertia of the excavator, the RLS estimation with multiple forgetting and two updating rules for the nominal parameter and the forgetting factors was conducted based on the excavator-swing dynamics. The average value of the estimated rotational inertia that is for the minimizing effects of the estimation error was computed using the recursive-average method with forgetting. Based on the swing dynamics, the computed average of the rotational inertia, the damping coefficient for braking, and the excavator's braking angle were predicted, and the predicted braking angle was compared with the detected-object angle for a safety evaluation. The safety level defined in this study consists of the three levels safe, warning, and emergency braking. The analytical rotational-inertia-based performance evaluation of the designed estimation algorithm was conducted using a typical working scenario. The results of the safety evaluation show that the predictive safety-evaluation algorithm of the proposed model can evaluate the safety level of the excavator during its operation.

Quadrangulation of Sewing Pattern Based on Recursive Geometry Decomposition (재귀적 기하 분해 방법에 기반한 봉제 패턴의 사각화 방법)

  • Gizachew, Gocho Yirga;Jeong, Moon Hwan;Ko, Hyeong Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The computational cost of clothing simulation and rendering is mainly depends on the type of mesh and its quality. Thus, quadrilateral meshes are generally preferred over triangular meshes for the reasons of accuracy and efficiency. This paper presents a method of quadrangulating sewing pattern based on the recursive geometry decomposition method. Herein, we proposed two simple improvements to the previous algorithms. The first one deals with the recursive geometry decomposition in which the physical domain is decomposed into simple and mappable regions. The second proposed algorithm deals with the vertex validation in which the invalid vertex classification can be validated.

Frequency Estimation Method using Recursive Discrete Wavelet Transform for Fault Disturbance Recorder (FDR를 위한 RDWT에 의한 주파수 추정 기법)

  • Park, Chul-Won;Ban, Yu-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1492-1501
    • /
    • 2011
  • A wide-area protection intelligent technique has been used to improve a reliability in power systems and to prevent a blackout. Nowadays, voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in power systems. As this technique has the difficulties in collecting and sharing of information, there have been used a FNET method for the wide-area intelligent protection. This technique is very useful for the prediction of the inception fault and for the prevention of fault propagation with accurate monitoring frequency and frequency deviation. It consists of FDRs and IMS. It is well known that FNET can detect the dynamic behavior of system and obtain the real-time frequency information. Therefore, FDRs must adopt a optimal frequency estimation method that is robust to noise and fault. In this paper, we present comparative studies for the frequency estimation method using IRDWT(improved recursive discrete wavelet transform), for the frequency estimation method using FRDWT(fast recursive discrete wavelet transform). we used the Republic of Korea 345kV power system modeling data by EMTP-RV. The user-defined arbitrary waveforms were used in order to evaluate the performance of the proposed two kinds of RDWT. Also, the frequency variation data in various range, both large range and small range, were used for simulation. The simulation results showed that the proposed frequency estimation technique using FRDWT can be the optimal frequency measurement method applied to FDRs.

A Variable Sample Rate Recursive Arithmetic Half Band Filter for SDR-based Digital Satellite Transponders (SDR기반 디지털 위성 트랜스폰더를 위한 가변 표본화율의 재귀 연산 구조)

  • Baek, Dae-Sung;Lim, Won-Gyu;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1079-1085
    • /
    • 2013
  • Due to the limited power supply resources, it is essential that the minimization of algorithmic operation and the reduction of the hardware logical-resources in the design of the satellite transponder. It is also required that the transponder process the signals of various bandwidth efficiently, that is suitble for the SDR-based implementation. This paper proposes a variable rate down sampler which can provide variable bandwidth and data rate for carrier, ranging and sub-band command signals respectively. The proposed down sampler can provide multiple $2^M$ decimated outputs from a single half band filter with recursive arithmetic architecture, which can minimize the hardware resources as well as the arithmetic operations. The algorithm for hardware implementation as well as the analysis for the passband flatness and aliasing is presented and varified by the FPGA implementation.

Conditional Probability Based Early Termination of Recursive Coding Unit Structures in HEVC (HEVC의 재귀적 CU 구조에 대한 조건부 확률 기반 고속 탐색 알고리즘)

  • Han, Woo-Jin
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.354-362
    • /
    • 2012
  • Recently, High Efficiency Video Coding (HEVC) is under development jointly by MPEG and ITU-T for the next international video coding standard. Compared to the previous standards, HEVC supports variety of splitting units, such as coding unit (CU), prediction unit (PU), and transform unit (TU). Among them, it has been known that the recursive quadtree structure of CU can improve the coding efficiency while the encoding complexity is increased significantly. In this paper, a simple conditional probability to predict the early termination condition of recursive unit structure is introduced. The proposed conditional probability is estimated based on Bayes' formula from local statistics of rate-distortion costs in encoder. Experimental results show that the proposed method can reduce the total encoding time by about 32% according to the test configuration while the coding efficiency loss is 0.4%-0.5%. In addition, the encoding time can be reduced by 50% with 0.9% coding efficiency loss when the proposed method was used jointly with HM4.0 early CU termination algorithm.

Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model (증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계)

  • Park, Sang-Beom;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

Topological Properties of Recursive Circulants : Disjoint Paths (재귀원형군의 위상 특성 : 서로소인 경로)

  • Park, Jeong-Heum;Jwa, Gyeong-Ryong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.1009-1023
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k ) 그래프 이론적 관점에서 고찰하고 정점이 서로소인 경로에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )의 서로 다른 두 노드 v와 w를 잇는 연결도 kappa(G)개의 서로소인 경로의 길이가 두 노드 사이의 거리d(v,w)나 혹은 G(2^m , 2^k )의 지름 \dia(G)에 비해서 얼마나 늘어나는지를 고려한다. 서로소인 경로를 재귀적으로 설계하는데, 그 길이는 k ge2일 때 d(v,w)+2^k-1과 \dia(G)+2^k-1의 최솟값 이하이고, k=1일 때 d(v,w)+3과 \dia(G)\+2의 최솟값 이하이다. 이 연구는 (2^m , 2^k )의 고장 감내 라우팅, 고장 지름이나 persistence의 분석에 이용할 수 있다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties concerned with node-disjoint paths. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . We consider the length increments of {{{{kappa(G)disjoint paths joining arbitrary two nodes v and win G(2^m , 2^k )compared with distance d(v,w)between the two nodes and diameter {{{{\dia(G)of G(2^m , 2^k ), where kappa(G)is the connectivity of G(2^m , 2^k ). We recursively construct disjoint paths of length less than or equal to the minimum of {{{{d(v,w)+2^k-1and \dia(G)+2^k-1for kge2 and the minimum of d(v,w)+3 and \dia(G)+2for k=1. This work can be applied to fault-tolerant routing and analysis of fault diameter and persistence of G(2^m , 2^k )

Recursive Probability Estimation of Decision Feedback Equalizers based on Constant Modulus Errors (상수 모듈러스 오차의 반복적 확률추정에 기반한 결정궤환 등화)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2172-2177
    • /
    • 2015
  • The DF-MZEP-CME (decision feedback - maximum zero-error probability for constant modulus errors) algorithm that makes the probability for constant modulus error (CME) close to zero and employs decision feedback (DF) structures shows more improved performance in channel distortion compensation. However the DF-MZEP-CME algorithm has a computational complexity proportional to a sample size for probability estimation and this property plays a role of an obstacle in practical implementation. In this paper, the gradient of DF-MZEP-CME is proposed to be estimated recursively and shown to solve the computational problem by making the algorithm independent of the sample size. For a sample size N, the conventional method has 10N multiplications but the proposed has only 20 regardless of N. Also the recursive gradient estimation for weight update is kept in continuity from the initial state to the steady state without any error propagation.