• Title/Summary/Keyword: recursive

Search Result 1,608, Processing Time 0.032 seconds

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.

A Study on the Modified RLS Algorithm Using Orthogonal Input Vectors (직교 입력 벡터를 이용하는 수정된 RLS 알고리즘에 관한 연구)

  • Ahn, Bong Man;Kim, Kwang Woong;Ahn, Hyun Gyu;Han, Byoung Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • This paper proposes an easy algorithm for finding tapped-delay-line (TDL) filter coefficients in an adaptive filter algorithm using orthogonal input signals. The proposed algorithm can be used to obtain the coefficients and errors of a TDL filter without using an inverse orthogonalization process for the orthogonal input signals. The form of the proposed algorithm in this paper has the advantages of being easy to use and similar to the familiar recursive least-squares (RLS) algorithm. In order to evaluate the proposed algorithm, system identification simulation of the $11^{th}$-order finite-impulse-response (FIR) filter was performed. It is shown that the convergence characteristics of the learning curve and the tracking ability of the coefficient vectors are similar to those of the conventional RLS analysis. Also, the derived equations and computer simulation results ensure that the proposed algorithm can be used in a similar manner to the Levinson-Durbin algorithm.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia;Zhang, Xiaoxiong;Dai, Naxin
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

Towards a digital twin realization of the blade system design study wind turbine blade

  • Baldassarre, Alessandro;Ceruti, Alessandro;Valyou, Daniel N.;Marzocca, Pier
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.271-284
    • /
    • 2019
  • This paper describes the application of a novel virtual prototyping methodology to wind turbine blade design. Numeric modelling data and experimental data about turbine blade geometry and structural/dynamical behaviour are combined to obtain an affordable digital twin model useful in reducing the undesirable uncertainties during the entire turbine lifecycle. Moreover, this model can be used to track and predict blade structural changes, due for example to structural damage, and to assess its remaining life. A new interactive and recursive process is proposed. It includes CAD geometry generation and finite element analyses, combined with experimental data gathered from the structural testing of a new generation wind turbine blade. The goal of the research is to show how the unique features of a complex wind turbine blade are considered in the virtual model updating process, fully exploiting the computational capabilities available to the designer in modern engineering. A composite Sandia National Laboratories Blade System Design Study (BSDS) turbine blade is used to exemplify the proposed process. Static, modal and fatigue experimental testing are conducted at Clarkson University Blade Test Facility. A digital model was created and updated to conform to all the information available from experimental testing. When an updated virtual digital model is available the performance of the blade during operation can be assessed with higher confidence.

A Two-Step Screening Algorithm to Solve Linear Error Equations for Blind Identification of Block Codes Based on Binary Galois Field

  • Liu, Qian;Zhang, Hao;Yu, Peidong;Wang, Gang;Qiu, Zhaoyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3458-3481
    • /
    • 2021
  • Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.

Development of a RLS based Adaptive Sliding Mode Observer for Unknown Fault Reconstruction of Longitudinal Autonomous Driving (종방향 자율주행의 미지 고장 재건을 위한 순환 최소 자승 기반 적응형 슬라이딩 모드 관측기 개발)

  • Oh, Sechan;Song, Taejun;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • This paper presents a RLS based adaptive sliding mode observer (A-SMO) for unknown fault reconstruction in longitudinal autonomous driving. Securing the functional safety of autonomous vehicles from unexpected faults of sensors is essential for avoidance of fatal accidents. Because the magnitude and type of the faults cannot be known exactly, the RLS based A-SMO for unknown acceleration fault reconstruction has been designed with relationship function in this study. It is assumed that longitudinal acceleration of preceding vehicle can be obtained by using the V2V (Vehicle to Vehicle) communication. The kinematic model that represents relative relation between subject and preceding vehicles has been used for fault reconstruction. In order to reconstruct fault signal in acceleration, the magnitude of the injection term has been adjusted by adaptation rule designed based on MIT rule. The proposed A-SMO in this study was developed in Matlab/Simulink environment. Performance evaluation has been conducted using the commercial software (CarMaker) with car-following scenario and evaluation results show that maximum reconstruction error ratios exist within range of ±10%.

Diagnosis of Alzheimer's Disease using Combined Feature Selection Method

  • Faisal, Fazal Ur Rehman;Khatri, Uttam;Kwon, Goo-Rak
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.667-675
    • /
    • 2021
  • The treatments for symptoms of Alzheimer's disease are being provided and for the early diagnosis several researches are undergoing. In this regard, by using T1-weighted images several classification techniques had been proposed to distinguish among AD, MCI, and Healthy Control (HC) patients. In this paper, we also used some traditional Machine Learning (ML) approaches in order to diagnose the AD. This paper consists of an improvised feature selection method which is used to reduce the model complexity which accounted an issue while utilizing the ML approaches. In our presented work, combination of subcortical and cortical features of 308 subjects of ADNI dataset has been used to diagnose AD using structural magnetic resonance (sMRI) images. Three classification experiments were performed: binary classification. i.e., AD vs eMCI, AD vs lMCI, and AD vs HC. Proposed Feature Selection method consist of a combination of Principal Component Analysis and Recursive Feature Elimination method that has been used to reduce the dimension size and selection of best features simultaneously. Experiment on the dataset demonstrated that SVM is best suited for the AD vs lMCI, AD vs HC, and AD vs eMCI classification with the accuracy of 95.83%, 97.83%, and 97.87% respectively.

A Realization of Real Time Algorithm for Fault and Health Diagnosis of Turbofan Engine Components (터보팬엔진의 실시간 구성품 결함 및 건전성 진단 알고리즘 구현)

  • Han, Dong-Ju;Kim, Sang-Jo;Lee, Soo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.717-727
    • /
    • 2022
  • An algorithm is realized for estimating the component fault and health diagnosis such as a deterioration. Based on the turbofan engine health diagnosis model, from the health parameters which are estimated by a real time tracking filter, the outliers are eliminated efficiently by an effective median filter to minimize an false alarm. The difference between the fault and deterioration trends is identified by the detection measure for abrupt change, thereby the clear diagnosis classifying the fault and the health condition is possible. The effectiveness of the algorithm for fault and health diagnosis is verified from the simulated results of engine component faults and deterioration.

Classification method for failure modes of RC columns based on key characteristic parameters

  • Yu, Bo;Yu, Zecheng;Li, Qiming;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • An efficient and accurate classification method for failure modes of reinforced concrete (RC) columns was proposed based on key characteristic parameters. The weight coefficients of seven characteristic parameters for failure modes of RC columns were determined first based on the support vector machine-recursive feature elimination. Then key characteristic parameters for classifying flexure, flexure-shear and shear failure modes of RC columns were selected respectively. Subsequently, a support vector machine with key characteristic parameters (SVM-K) was proposed to classify three types of failure modes of RC columns. The optimal parameters of SVM-K were determined by using the ten-fold cross-validation and the grid-search algorithm based on 270 sets of available experimental data. Results indicate that the proposed SVM-K has high overall accuracy, recall and precision (e.g., accuracy>95%, recall>90%, precision>90%), which means that the proposed SVM-K has superior performance for classification of failure modes of RC columns. Based on the selected key characteristic parameters for different types of failure modes of RC columns, the accuracy of SVM-K is improved and the decision function of SVM-K is simplified by reducing the dimensions and number of support vectors.