• Title/Summary/Keyword: recurrent neural network model

Search Result 353, Processing Time 0.031 seconds

The development of semi-active suspension controller based on error self recurrent neural networks (오차 자기순환 신경회로망 기반 반능동 현가시스템 제어기 개발)

  • Lee, Chang-Goo;Song, Kwang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.932-940
    • /
    • 1999
  • In this paper, a new neural networks and neural network based sliding mode controller are proposed. The new neural networks are an mor self-recurrent neural networks which use a recursive least squares method for the fast on-line leammg. The error self-recurrent neural networks converge considerably last than the back-prollagation algorithm and have advantage oi bemg less affected by the poor initial weights and learning rate. The controller for suspension system is designed according to sliding mode technique based on new proposed neural networks. In order to adapt shding mode control mnethod, each frame dstance hetween ground and vehcle body is estimated md controller is designed according to estimated neural model. The neural networks based sliding mode controller approves good peiformance throllgh computer sirnulations.

  • PDF

Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction (미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교)

  • Cho, Kyoung-Woo;Jung, Yong-jin;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2021
  • The growing concerns on the emission of particulate matter has prompted a demand for highly reliable particulate matter forecasting. Currently, several studies on particulate matter prediction use various deep learning algorithms. In this study, we compared the predictive performances of typical neural networks used for particulate matter prediction. We used deep neural network(DNN), recurrent neural network, and long short-term memory algorithms to design an optimal predictive model on the basis of a hyperparameter search. The results of a comparative analysis of the predictive performances of the models indicate that the variation trend of the actual and predicted values generally showed a good performance. In the analysis based on the root mean square error and accuracy, the DNN-based prediction model showed a higher reliability for prediction errors compared with the other prediction models.

Application of a Neural Network to Dynamic Draft Model

  • Choi, Yeong Soo;Lee, Kyu Seung;Park, Won Yeop
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.67-72
    • /
    • 2000
  • A dynamic draft model is necessary to analyze mechanics of tillage and to design optimal tillage tools. In order to deal with draft dynamics, a neural network paradigm was applied to develop dynamic draft models. For the development of the models, three kinds of tillage tools were used to measure drafts in the soil bin and a time lagged recurrent neural network was developed. The neural network had a structure to predict dynamic draft, having a function of one-step-ahead prediction. A procedure for network prediction model identification was established. The results show promising modeling of the dynamic drafts with developed neural network.

  • PDF

Input-Ouput Linearization and Control of Nunlinear System Using Recurrent Neural Networks (리커런트 신경 회로망을 이용한 비선형 시스템의 입출력 선형화 및 제어)

  • 이준섭;이홍기;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.185-188
    • /
    • 1997
  • In this paper, we execute identification, linearization, and control of a nonlinear system using recurrent neural networks. In general nonlinear control system become complex because of nonlinearity and uncertainty. And though we compose nonlinear control system based on the model, it is difficult to get good control ability. So we identify the nonlinear control system using the recurrent neural networks and execute feedback linearization of identified model, In this process we choose the optional linear system, and the system which will have to be feedback linearized if trained to follow the linearity between input and output of the system we choose. We the feedback linearized system by applying standard linear control strategy and simulation. And we evaluate the effectiveness by comparing the result which is linearized theoretically.

  • PDF

Earthquake events classification using convolutional recurrent neural network (합성곱 순환 신경망 구조를 이용한 지진 이벤트 분류 기법)

  • Ku, Bonhwa;Kim, Gwantae;Jang, Su;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.592-599
    • /
    • 2020
  • This paper proposes a Convolutional Recurrent Neural Net (CRNN) structure that can simultaneously reflect both static and dynamic characteristics of seismic waveforms for various earthquake events classification. Addressing various earthquake events, including not only micro-earthquakes and artificial-earthquakes but also macro-earthquakes, requires both effective feature extraction and a classifier that can discriminate seismic waveform under noisy environment. First, we extract the static characteristics of seismic waveform through an attention-based convolution layer. Then, the extracted feature-map is sequentially injected as input to a multi-input single-output Long Short-Term Memory (LSTM) network structure to extract the dynamic characteristic for various seismic event classifications. Subsequently, we perform earthquake events classification through two fully connected layers and softmax function. Representative experimental results using domestic and foreign earthquake database show that the proposed model provides an effective structure for various earthquake events classification.

A study on the weakly-supervised deep learning algorithm for active sonar target recognition based on pseudo labeling using convolutional recurrent neural network model (합성곱 순환 신경망 모델을 이용한 의사 레이블링 기법 기반 능동소나 표적 식별 약지도 딥러닝 알고리즘 연구)

  • Yena You;Wonnyoung Lee;Seokjin Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.5
    • /
    • pp.502-510
    • /
    • 2024
  • In this paper, we proposed the weakly-supervised deep learning algorithm for active sonar target recognition based on pseudo labeling using Conventional Recurrent Neural Network (CRNN) model widely used for acoustic signal processing because it can effectively utilize small and unbalanced active sonar data. Active sonar simulation data assuming two different SNRs and clutter environments were used in the training and testing process, and spectrogram obtained by applying Short Time Fourier Transform (STFT) to the simulation data was used as a feature factor for algorithm training. The algorithm proposed in this paper was evaluated based on the target and nontarget F1-score using test data independent of training data. As a result, it was confirmed that the CRNN model showed significant performance not only in typical acoustic signal processing but also active sonar target recognition. Also, pseudo-labeling helps to improve the performance of the active sonar target recognition algorithm used the CRNN model.

Application of A Neural Network To Dynamic Draft Model

  • Park, Yeong-Soo;Lee, Kyou-Seung;Park, Won-Yeop
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.423-433
    • /
    • 1996
  • This study was conducted to predict the drafts of various tillage tools with a model tool and a neural network. Drafts of tillage tools were measured and a time lagged recurrent neural network was developed. The neural network had a structure to predict dynamic draft, having a function of one step ahead prediction . The results showed the model tool draft had linear relations with high coefficient of determinations to the drafts of the tillage tools. Also, the drafts of tillage tools were successfully predicted by the developed neural network.

  • PDF

S2-Net: Machine reading comprehension with SRU-based self-matching networks

  • Park, Cheoneum;Lee, Changki;Hong, Lynn;Hwang, Yigyu;Yoo, Taejoon;Jang, Jaeyong;Hong, Yunki;Bae, Kyung-Hoon;Kim, Hyun-Ki
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.371-382
    • /
    • 2019
  • Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short-term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self-matching network, used in R-Net, can have a similar effect to coreference resolution because the self-matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an $S^2-Net$ model that adds a self-matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed $S^2-Net$ model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.

A Study on a Rrecurrent Multilayer Feedforward Neural Network (자체반복구조를 갖는 다층신경망에 관한 연구)

  • Lee, Ji-Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.149-157
    • /
    • 1994
  • A method of applying a recurrent backpropagation network to identifying or modelling a dynamic system is proposed. After the recurrent backpropagation network having both the characteristicsof interpolative network and associative network is applied to XOR problem, a new model of recurrent backpropagation network is proposed and compared with the original recurrent backpropagation network by applying them to XOR problem. based on the observation thata function can be approximated with polynomials to arbitrary accuracy, the new model is developed so that it may generate higher-order terms in the internal states Moreover, it is shown that the new network is succesfully applied to recognizing noisy patterns of numbers.

  • PDF