Agri. & Biosys. Eng. Vol. 1(2):67-72(2000)

Application of a Neural Network to Dynamic Draft Model

Y. S. Choi, K. S. Lee, W. Y. Park

-Abstract: A dynamic draft model is necessary to analyze mechanics of tillage and to design optimal tillage
tools. In order to deal with draft dynamics, a neural network paradigm was applied to develop dynamic draft
models. For the development of the models, three kinds of tillage tools were used to measure drafts in the soil
bin and a time lagged recurrent neural network was developed. The neural network had a structure to predict
dynamic draft, having a function of one-step-ahead prediction. A procedure for network prediction model
identification was established. The results show promising modeling of the dynamic drafts with the developed

neural network.
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Introduction

One of the major objectives of tillage is to provide
optimum environmental conditions for plant grows.
More than 2 million hectares are stirred or turmed each
year in Korea. To plow this soil once requires 8~12
million liters of diesel or gasoline fuel. It is apparent
that the improvement of tillage tool design can enable
to reduce mechanical energy and labor requirements
and to optimize the soil conditions.

There has been a marked upsurge in tillage tool
design of research since about 1950s. However, no
reliable attempt for tillage tool design has been made
to describe soil failure patterns or the mechanisms of
soil failure because soil has ununiformity and different
characteristic according to fields. Most studies on the
tillage tool design have focused mainly on reporting
experimental findings under certain conditions with
specific parameters.

The soil reaction to the forces applied by tillage
tools is affected from compression resistance, shear
resistance, adhesion, and frictional resistance. These are
all dynamic properties that change through movement
of the soil. In analyzing draft, mean value has been
usually used to represent the draft measured over an
entire experimental range. If dynamic draft model is
available, predicted force acting on tillage tools during
soil failure can be used for the analysis of tillage
mechanics and the optimal design of tillage tools. A
large number of models have been developed for the
prediction of draft to engaging tillage tools (Hettiarachi
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and Reece, 1965; Mekyes and Ali, 1977; Perumpral
and Grisso, 1983; Stafford, 1984). A dynamic model
for soil cutting by blade and tine was reported by
Dechao and Yusu (1992). Shear rate effect was taken
account of both on soil shear strength and soil-metal
friction.

Of the tillage-tool design factors, -tool shape is a
main factor for the designer because forces acting
upon a tillage tool are determined with respect to the
tool shape. Actually, the forces are affected by the
tool shape and soil condition as well. Draft is the
component of pull in the direction of travel and may
involve information about mechanics of tillage. Because
of fluctuation in measured signal, draft is usually
calculated by averaging the wvalues within a run.
However, the draft shows periodic variation as soil
fails in the form of furrow slices. So, a dynamic draft
model is necessary for the analysis of the relation
between draft and the tool shape. A neural network
can be effectively used for the nonlinear mapping such
as the modeling of dynamic draft.

Objectives
The main objective of this study was to develop a
neural network model for the prediction of the
dynamic draft of tillage tool. Specific objectives of this
study were to measure drafts of tillage tools and to
apply a neural network to the dynamic prediction of
tillage tool drafts.

Materials and Methods

1. Tillage tools

Shearing force and cone index are widely used to
represent physical property of a soil in predicting draft.
It is known that soil failure in measuring shear force
and cone index is different from failures by tillage
tools. In order to predict draft closely to actual draft,
it is necessary to develop new measuring device whose
mechanics of soil failure is similar to the mechanics
by tillage tools. A model tool was tested as a new
measuring device. All drafts of tillage tools have
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Table 1. Specifications of the tested tillage tools (Janggi and Plow)

Max. shear lift Sefting angle Width of shear : Moldboard
Implement Weight (N)
angle (degree) |Qhear (degree) | Wing (degree) (cm) type
Janggi 51.3 40.9 63.0 234 171.5 5-fork
Plow 21.3 422 55.3 15.5 73.5 Cylindrical

(a) janggi

Fig. 1 View of the tillage tools.

acceptable linear relations to the model tool draft.
(Lee, 1996).

Tillage tools used in this study were a moldboard
plow, a janggi(Korean plow), and a model tool. Table
1 gives the specifications of the moldboard plow and
the janggi. Figure 1 shows the view of the tillage

tools used in this study.

2. Soil bin

Measurements of tillage tool drafts were carried out
in the soil bin installed in the Soil-Machine System
Lab at the Bio-mechatronic engineering department of
Sungkyunkwan university. This soil bin is Im wide,
0.7m deep, and 12m long. A tool carrier, pulled by a
steel cable wound on a motor-driven pulley, moved the

Table 2. Physical properties of tested soil

(b) moldboard plow

(c) model tool

tillage tools. A track for the carrier was installed on
the walls of the soil bin to maintain constant width
and depth of cut. Tillage tools were attached to the
carrier according to the hitch types. Tested soil was
sandy loam. Table 2 gives physical properties of the
tested soil.

3. Data acquisition system

The main components of data acquisition system
were a load cell, a rotary encoder, a strain amplifier,
and a microcomputer (100MHz Pentium processor)
with PC Lab card. The load cell (Kyowa Co.) with
nominal rating of S5kN could measure tensile or
compressive forces. The rotary encoder (E6A-CS100)
was used to measure the tillage speed and generated

Composition Internal frictional Cohesion Adhesion
Texture Jom? Jem?
Sand (%) Silt(%) Clay(%) angle (degree) (N/em?) (N/em’)
54.4 51.3 8.8 Sandy loam 57.1 82.3 37.2
Soil-metal friction angle Moisture content Cone index . 3
(degree) %, db.) (N/em?) Bulk density (g/em’)
41.7 11.7 10.8 14
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100 pulses per one revolution. The strain amplifier
(DPM-311A, Kyowa Co.) was used to amplify the
signal come from the load cell and its output voltage
was L£5V. The PC Lab card had an A/D converter
and a counter for counting pulses generated from the
rotary encoder. The A/D converter had a resolution of
12 bit, and its A/D conversion time was 9pus.

4. Draft measurement

Before the run of each experiment, the following
preparations were made to ensure that the same soil
conditions were maintained in all tests: the soil was
pulverized, stirred, and leveled by the soil processing
carriage. The soil processing carriage had a rotary
tiller, a leveler, and a roller. First preparation was
done to pulverize the soil with the rotary tiller at the
depth of 20cm, which was approximately equal to the
maximum tillage depth in fields. Second preparation
was done to level the soil with the leveler. Last, the
soil was compacted twice with the roller. Order and
the number of times for the preparations were same in
all experiments.

Drafts were measured at the level of tillage depth of
12cm, which is practical depth in Korea. The tillage
speed was 0.49m/s. And all tests carried out three
times with sampling time of 0.14sec.

5. Neural network structure

In order to develop the dynamic draft model, a time
lagged recurrent neural network (TLRNNj) was
constructed so that the model can process time series
data. The TLRNN developed in this study is identical
to a feedforward neural network (FFN) in structure,
but is trained by using the backpropagation through
time algorithm as stated by Werbos, et al (1992).
Backpropagation through time modifies the conventional
backpropagation algorithm by viewing a network's
recall of a time sequence as a cascaded neural network
where each cascade step represents one time step in
the time series.

Neural networks are “model free” estimators, so they

can be used to directly approximate the function fO
directly as follows:

yO=fly(t-1),y(t-2),....y(t-p),u(t-d-1),u(t-d-2),...,u(t-d-q), W} (1)
Where u(t) is input vector of y(t). f{) is the
approximation of the function f(), y(t) is the output
vector of the neural network model, and W is the set
of weights and bias terms in the network model.
Equation (1) can be extended as a predictor if the past
values of output y(t) are used as input vector for the
prediction of y(t+1). Equation (1) can be written in the
form of a one-step-ahead predictor:

y(t+l |t)=ng(t),;(t-1),....y_<t-p+1),ga-d),g(t-d),...,g(t-d-q+1)Xy] )
Where 9(t+1 | t) is the one-step-ahead prediction of
y(t). The weights and bias terms in a network can be
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hidden
layer

output
layer

Fig. 2 Architecture of TLRNN.

adapted to minimize the squared errors of the network
outputs as follows:

LR PR ; 3)
J= 22 O - 30Ty - §w)
t=1i
Where N is the number of observations. The function
J represents a total error over considered time

sequence. In this study, only previous values of y(t)
are used to predict y(t+1 |t) as inputs. So, y(t+1 | 1)
is only a function of y(t) and W. N is the number of
previous values of y(t). Since the TLRNN is identical
to the FFN in structure, the FFN was used as a
starting point for training the TLRNN. This greatly
reduced training time to convergence. Figure 2 shows -~
the construction of TLRNN. For the case of this
study, y(t) had one variable. Therefore, the procedure
for implementing TLRNN was as follows:

1. Starting with an initial weight set and initializing
the network with real values of inputs (if necessary)
and output y(t), y(t+1) was predicted. Then, the
predicted value of y(t+1) was used to predict y(t+2),
and so on to the end of the time sequence. This
prediction is called one step ahead prediction and is
expressed simply as follows:

§+1) = YO,y = 1. Y(1 -yl =), W] @

2. At each time step, weight updates were calculated
based on backpropagation algorithm.

3. Weights were updated by averaging all the weight
updates over time and multiplying a very small
learning rate.

Results and Discussion
1. Dynamic draft
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Fig. 3 Variation of draft to time.

Many researchers have reported that periodical soil
failure and the peak of draft appear as a tillage tool
advances (Kepner, 1972. Osman, 1964), and the draft
varies within the range of *£30~50% for its mean
value.

The drafts, measured at the tillage depth of 12c¢m
and the tillage speed of 0.49m/s, were plotted in
Figure 3 in order to represent the dynamic changes in
drafts. The figure shows the janggi draft had similar
peaks- to the moldboard plow draft; however, the
model tool draft was different. Results indicated that
soil failure by the model tool was different from the
failures by the moldboard plow and the janggi. It was
considered the difference was caused from the shapes
of the tools. Comparing to the moldboard plow and
the janggi, the model tool was symmetric in shape and
had a narrow tillage width. Even though the peaks of
the drafts were appeared periodically, it was difficult
to verify the forces acting upon the tillage tools or the
mechanisms of soil failure from the measured drafts.

2. Neural network draft model

For training the neural network, the initial weight
values were selected randomly and determined by
regular backpropagation at initial stage of the training.
Then the weights of the neural network were modified
with the way of backpropagation through time. To
speed training, several modifications were made to the
network as suggested by Fahlman(1990). First, in order
to eliminate “flat spots” that occurs during training
because of a small derivative value for the sigmoid
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Fig. 4 Prediction of moldboard plow draft.

functions, a constant offset of 0.1 was added to the
calculation of the derivative. This modification has
been shown to cut leamning time almost in half.
Second, a tangent function was performed on the mean
squared at the output before being backpropagated.
This improved training speed by putting more emphasis
on training patterns with large errors over small errors.
Last, the weights to the network were averaged over
all training patterns (batch learning). All inputs and
outputs were scaled to between 0.1 and 0.9 before
training.

The data measured for three replications were
randomly split up into the three groups, keeping
sequences of time in order to evaluate continuous
prediction: one for parameter modification, one for
termination of training, and one for determining the
performance of the neural network. Mean squared error
(MSE) was used to evaluate the performance of the
trained neural network. MSE is defined by

1 2
MSE Ngb(t) 0 )

Moldboard plow draft: The number of nodes in input
layer determines how many inputs are necessary for
the best draft prediction, explained in equation (2).
Optimal number of nodes helps to understand the
frequency of the draft. The number of nodes in the
hidden layer determines only a performance of the
network. In order to find the effect of the number of
nodes in input layer and hidden layer, the performance
of the network was evaluated based on MSE after the

Table 3 Effect of the number of nodes in layers on the neural network (moldboard plow)

Case 1 Case 2 Case 3
Node no. in input layer 4 6 8
Node no. in hidden layer 9 8 12
Learning rate 0.10 0.10 0.10
MSE 0.0155 0.0193 0.0207
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Table 4 Results of trained neural networks for draft models

Moldboard plow Janggi Mode! tool
Node no. in input layer 7 4
Node no. in hidden layer 12 9
Leaming rate 0.10 0.15 0.10
MSE 0.0155 0.0287 0.0145
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Fig. 5 Prediction of janggi draft.

same training iteration. Table 3 gives the results after
16,000 iterations for the moldboard plow draft. As
shown in the table, minimum MSE appeared when the
number of nodes in the input layer and the hidden
layer were 4 and 9, respectively. Further training
proceeded with the selected structure until MSE
reached at an acceptable value. Figure 4 shows the
result of one-step-ahead prediction by the trained
network. MSE after 56,000 iterations was 0.0108. The
change of draft predicted by the network was very
similar to that of the measured draft. This result
indicated it was possible to model the dynamic draft
of the moldboard plow by the TLRNN. The frequency
of the measured draft was not corresponding to the
number of furrows. In moldboard plow draft, mean
values of the measured draft and the predicted draft
were 397N and 398N, respectively.

Janggi draft: Table 4 gives the results after 5,000
iterations for the selection of the number of nodes in
case of the janggi draftt Minimum MSE appeared
when the number of nodes in the input layer and the
hidden layer were 7 and 12, respectively. The network
was well trained when the number of node was more
than the number of the moldboard plow model in the
input layer. It was observed from this result that the
period of soil failure by the janggi was longer than
the period by the moldboard plow. Figure 4 shows the
result of one-step-ahead prediction after 80,000
iterations. Mean values of the measured draft and the
predicted draft were 416N and 413N, respectively.
Also, MSE after training was 0.0102.

0 5 10 15 20 25 30 35 40 45
Time (sec)

Fig. 6 Prediction of model tool draft.

Model tool draft: For the case of model tool, the
network with 4 and 9 nodes in the input layer and the
hidden layer was chosen. The network with 8 nodes in
the input layer had lower MSE than the selected
network; however, it was thought 8 nodes could not
reflect real period of the draft. It was observed that
the period of soil failure by the model tool was
similar to the period by the janggi. Figure 6 shows
the result of one-step-ahead prediction after 35,000
iterations. Mean values of the measured draft and the
predicted draft were 336N and 339N, respectively.
Final MSE for the model tool model was 0.01.

Conclusions

This article has developed the neural network
one-step-ahead prediction model for the prediction of
dynamic draft. The architecture and training algorithm
of the model, the time lagged recurrent neural network
(TLRNN), were established. In order to get the
training data, drafts were measured for three kinds of
tillage tools (the moldboard plow, the janggi, and the
model tool) with the load cell in the soil bin. Results
showed that the neural network acceptably modeled the
dynamic drafts. Even though the results showed the
application of the neural network to the specific tillage
tools and the soil condition in this study, the
developed neural network can be directly applied to
the modeling of other dynamic drafts.

References
Fahlman, S. 1988. Faster-learning variations on back-

71



Agri. & Biosys. Eng.

propagation: an empirical study. Proceedings of the
1988 Connectionist Models Summer School. New
York, NY: Morgan Kaufmann.

Hettiarachi D. R. P. and A. R. Reece. 1965,
Symmetrical three-dimensional soil failure. Journal
of Terramechanics 4(3):45-67.

Kepner, R. A, R. Bainer and E. L. Barger. 1972.
Principles of farm machinery. AVI Publishing Co.
Lee, K. S, S. C. Cho, W. Y. Park and B. G. Kwon.
1996. Draft prediction of tillage implement by
model tool. Proceedings of the KSAM ’96 Con-

ference, 203-208.

Mekyes E. and O. S. Ali. 1977. The cutting of soil
by narrow blades. Journal of Terramechanics 14(2):
43-58.

Osman, M. S. 1964. The Mechanics of soil cutting

72

blades. Journal of Agricultural Engineering Re-
search. 9(4):313-328.

Perumpral, J. V., R. D. Grisso and C. S. Desai. 1983.
A soil-tool model based on limit equilibrium
analysis. Transactions of the ASAE. 26(2): 991-995.

Stafford, J. 1984. Force prediction models for brittle
and flow failure of soil by draught tillage tools.
Journal of Agricultural Engineering Research. 29(1):
51-60.

Werbos, P, T. McAvoy and T. Su. 1992. Neural
networks, system identification, and control in the
chemical process industries. Handbook of Intelligent
Control: Neural, Fuzzy and Adaptive Approach, the
1992 edition. New York, NY: Multiscience Press,
Inc.



