• Title/Summary/Keyword: rectangular-shaped holes

Search Result 8, Processing Time 0.021 seconds

The Effects of Staggered Rows of Rectangular Shaped Holes on Film Cooling (엇갈린 배열의 사각홀이 막냉각에 미치는 영향)

  • Kim, Young-Bong;Rhee, Dong-Ho;Lee, Youn-Seok;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.304-314
    • /
    • 2004
  • An experimental study has been conducted to measure the temperature fields and the local film cooling effectiveness for two and three staggered rows of the rectangular shaped-holes with various blowing rates. The hydraulic diameter of rectangular-shaped hole is 10mm. To compare with the film cooling performance of rectangular-shaped hole, two kinds of circular holes are tested. One has the same hydraulic diameter as the rectangular hole and the other has the same cross sectional area. Also, rectangular holes with expanded exit with same inlet area as rectangular ones are tested. Temperature fields are measured using a thermocouple rake attached on three-axis traversing system. Adiabatic film cooling effectiveness on the surface are obtained based on experimental results of thermochromic liquid crystals. The film cooling effectiveness is measured for various blowing rates and compared with the results for the cylindrical holes. In case of 2 rows, the rectangular holes has better performance than circular holes due to its slot-like geometry. In case of 3 rows, the effecta of hole shape is not clear.

Measurement of Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes (사각홀에서 막냉각 효율 및 열전달계수의 측정)

  • 이윤석;이동호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.365-376
    • /
    • 2002
  • An experimental study has been conducted to measure the local film-cooling effectiveness and the heat transfer coefficient for a single row of rectangular-shaped holes. four different cooling hole shapes such ai a straight rectangular hole, a rectangular hole with laterally expanded exit, a circular hole and a two-dimensional slot are tested. A technique using thermochromic liquid crystals determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. Both film cooling effectiveness and heat transfer coefficient are measured for various blowing rates and compared with the results of the cylindrical ho1es and the two-dimensional slot. The flow patterns downstream of holes are calculated numerically using a cummercial package. The results show that the rectangular hopes provide better peformance than the cylindrical holes. For the rectangular holes with expanded exit, the penetration is reduced significantly, and the higher and more uniform cooling Peformance is obtained even at relatively high blowing rates.

Effect of Mainstream Turbulence Intensitv on Dimensionless Temperature Downstream of Staggered Rows of Recangular Hole (주유동의 난류강도가 엇갈린 배열의 사각홀 하류에서의 온도장 분포에 미치는 영향)

  • Kim, Young-Bong;Lee, Dong-Ho;Oh, Min-Guen;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.181-186
    • /
    • 2003
  • An experimental study has been conducted to measure the temperature fields for two and three staggered rows of the rectangular shaped-holes with high turbulence intensity. 10 % turbulence intensity is obtained by installation of two kinds of grids which have different shapes. One grid which is installed at 30d upstream from center of 1st row of holes is composed of vertical cylinders of which diameter is 10 mm and center to center distance is 18 mm. The other installed 15d apart to upstream from center of 1st row of holes which has square pattern is constructed of 3 rum square bars and bar spacing is 25 mm. Temperature fields are measured by using a thermocouple rake which is attached on three-axis traversing system. The results show that the overall values are decreased and the thicker film of coolant is fanned downstream of rows of holes for high mainstream turbulence intensity.

  • PDF

Automatic Triangular Mesh Generation Over B-Spline Surfaces Including Arbitrary Holes (임의의 구멍을 포함하는 B-Spline 곡면상에서의 자동 삼각 요소망 생성)

  • 김근호;양현익
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • In the process of finite element analysis, mesh generation is tedious job which consumes tremendous time. Therefore, the automation of well shaped mesh generation from the minimal boundary input data is desirable to improve reliability and accuracy of the analysis and also to reduce the process time of the entire design process. The automation of triangular mesh generation has been relatively well treated due to its robustness and ease of handling when compared to rectangular element mesh generation. In this study, the offset method developed previously for generating plane rectangular element mesh has been corrected and modified to generate triangular element mesh on the B-spline surface having arbitrary holes. The result shows that the generated triangular mesh has the average aspect ratio over 0.9. The designed arbitrary surface shape has been interactively constructed by non-uniform B-spline theory for triangular mesh generation.

A Study on the plan and the structural system of the '凸'-shaped, the '呂'-shaped and the hexagonal-shaped pit houses (철기시대 철자형(凸字形).여자형(呂字形) 및 한성백제기 육각형(六角形) 주거지(住居址)의 평면과 구조 형식에 관한 연구)

  • Lee, Seung-Yeon;Lee, Sang-Hae
    • Journal of architectural history
    • /
    • v.16 no.4
    • /
    • pp.37-56
    • /
    • 2007
  • The '凸'-shaped, the '呂'-shaped and the hexagonal-shaped pit houses were excavated at the Youngdong area, some location along the upper the Imjin River and Han River between the Iron age and the kingdom of Hanseong Baekje. The aim of this study is to analyze various structural system and developement of the pit house with rectangular plan. It is considered a matter in all its aspects which are plan, scale, aspect, pillar holes, carbonized wood and several traces. These pit houses removes the pillar on the inside or it reduces to secure a wider space, it pursued the chamfered corner, the change of the front, the entrance fixed. Also these adopted diverse structural systems(the chuandou structure, the structural system of columns and beams and a bearing wall). But in the course of time, the Korean wooden architecture is developed gradually the structural system of columns and beams. It is presumed the result that overcome the limit with the close space and pursue the flowing space and compose a group of organizable buildings.

  • PDF

Development of the Soybean Sprouting Bucket with Enhanced Air Circulation Function (공기치환기능이 강화된 콩나물 재배통 개발)

  • Kim, Joong-Man;Hwang, Ho-Sun;Jeon, Ye-Jeoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.695-699
    • /
    • 2003
  • Traditional soybean sprouting bucket has some problems which are putrefaction and growing inhibition by the high temperature and carbon dioxide in the bucket during culturing. To solve this problems we developed the new soybean sprouting bucket. The new bucket consisted a square shaped bottom which has 5 draining holes (each 10 mm in dia, 2 mm in height) and four side wall which has two rectangular shaped holes (10 cm long, 0.5 cm wide), and the support vessel which 592 tiny draining holes whose center attached a pipe with 36 small holes (each 2 mm in dia). The new one showed lower temperature and carbon dioxide content during culturing, and the putrefaction was lower, whereas growing degree was higher during culturing at 25$\pm$1$^{\circ}C$ than the traditional bucket.

Microstructuring of Optical Fibers Using a Femtosecond Laser

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul;Ryu, Jin-Chang;Kim, Jin-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • Laser ablation with femtosecond lasers is highly promising for microfabrication of materials. Also, the high peak power of femtosecond lasers could induce a multiphoton absorption to ablate transparent materials. Similar results have also been were obtained in the case of optical fibers. In this paper, we present our experimental results of femtosecond laser microstructuring of optical fiber and its applications to microelectronic components and fiber optic devices. Finally, we directly produced micro holes with femtosecond laser pulses in a single step by moving an optical fiber in a preprogrammed structure. When water was introduced into a hole drilled from the bottom surface of the optical fiber, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. We have presented circular and rectangular-shaped holes in optical fiber.

Ultrahigh Birefringence and Extremely Low Loss Slotted-core Microstructure Fiber in Terahertz Regime

  • Habib, Md. Ahasan;Anower, Md. Shamim;Hasan, Md. Rabiul
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.567-572
    • /
    • 2017
  • A novel slotted-core hexagonal photonic crystal fiber (PCF) for terahertz (THz) wave guiding is proposed in this paper. A trade-off managed between effective material loss (EML) and birefringence for efficient guidance of THz waves is illustrated in this article. The rectangular slot shaped air-holes break the symmetry of the porous-core which offers ultra-high birefringence of $8.8{\times}10^{-2}$. The proposed structure offers low bending loss of $1.07{\times}10^{-34}cm^{-1}$ and extremely low effective material loss (EML) of $0.035cm^{-1}$ at an operating frequency of 1.0 THz. In addition other guiding properties such as power fraction, dispersion and confinement loss are also discussed. The proposed THz waveguide can be effectively used for convenient transmission of THz waves.