• Title/Summary/Keyword: rectangular foundation

Search Result 98, Processing Time 0.023 seconds

A Study on the office furniture based on the case study (국내외 사례분석을 통한 사무용 가구 표현경향에 관한 연구)

  • Nam, Kyung-Sook;Ye, Mi-Jin;Ann, He-Sun
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2008.05a
    • /
    • pp.59-62
    • /
    • 2008
  • This research is to provide basic information for future development of an effective way for design office furniture. The purpose of this study is to provide foundation data that enable to design various office furniture. This article investigates what are the basic elements of office furniture and how various type of office furniture elements represent in many catalogues, articles. It was to understand what parts of office furniture elements influence when design the office furniture. Based on the research, conclusion was made as following: Through the 11 brands, it is found that rectangular-closed desk and tall closest is dominant in domestic brand whereas both open and closed desks are used in overseas brand and the closet design is changed based on the desk type.

  • PDF

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Floor Plan Analysis of Detached Houses for the Low-income Households

  • Kim, Junghwa;Ahn, Byunglip;Jang, Cheolyong;Jeong, Hakgeun;Kim, Jonghun
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • Energy poverty has been defined as low-income households who paid energy cost more than 10% of their ordinary income. Therefore, there are various subsidy programs focused on house remodeling for low-income households and one of them is the Home Energy Efficiency Assistance Program which have done by Korea Energy Foundation since 2007. The aim of the program is to improve the thermal performance of dilapidated dwellings and analyzed the detached house for the low-income households to develop the building typology. The database contained approximately 3,061 households which was obtained from the program in 2013 and the results of the study were like this; 1) For the shape of residential houses, the number of rectangular shaped building was higher than non-rectangular shaped ones. 2) For the orientation of buildings, the south layout of the detached housing was dominant to gain heating energy into buildings. 3) For the floor area, the average floor area was $44.2m^2$, although its size varied wide variations, which range from $6.3m^2$ to $107.1m^2$. 4) For the windows and doors, the south-facing window was larger than the other side. Finally it would be possible to determine the characteristics of residential houses for low-income families. A future study could establish typology of low-income housing that it would estimate the performance of each model building before and after the retrofit to improve the energy performance.

Finite Element Analysis Study of CJS Composite Structural System with CFT Columns and Composite Beams (CFT기둥과 합성보로 구성된 CJS합성구조시스템의 유한요소해석 연구)

  • Moon, A Hae;Shin, Jiuk;Lim, Chang Gue;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • This paper presents the effect on the inelastic behavior and structural performance of concrete and filled steel pipe through a numerical method for reliable judgment under various load conditions of the CJS composite structural system. Variable values optimized for the CJS synthetic structural system and the effects of multiple variables used for finite element analysis to present analytical modeling were compared and analyzed with experimental results. The Winfrith concrete model was used as a concrete material model that describes the confinement effect well, and the concrete structure was modeled with solid elements. Through geometric analysis of shell and solid elements, rectangular steel pipe columns and steel elements were modeled as shell elements. In addition, the slip behavior of the joint between the concrete column and the rectangular steel pipe was described using the Surface-to-Surface function. After finite element analysis modeling, simulation was performed for cyclic loading after assuming that the lower part of the foundation was a pin in the same way as in the experiment. The analysis model was verified by comparing the calculated analysis results with the experimental results, focusing on initial stiffness, maximum strength, and energy dissipation capability.

3D Transmitting Boundary for Water-Saturated Transversely Isotropic Soil Strata Based on the u-w Formulation (u-w 정식화에 근거한 지하수로 포화된 가로등방성 층상지반에서의 3차원 전달경계)

  • Lee, Jin-Ho;Kim, Jae-Kwan;Ryu, Jeong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.67-86
    • /
    • 2009
  • In this study, a 3D transmitting boundary in water-saturated transversely isotropic soil strata has been developed based on u-w formulation for application to general 3D analysis. Behavior in the far field region is expanded in the Fourier series, and dynamic stiffness for each term is obtained based on the u-w formulation. Transformation of the dynamic stiffness is presented to combine the transmitting boundary with the 3D finite elements for the near field region formulated in a 3D Cartesian coordinate system. The developed transmitting boundary is verified through a comparison of the dynamic behavior of a rigid circular foundation with the results from the existing numerical method. In addition, the developed transmitting boundary is applied to the analysis of the dynamic behavior of rigid foundations of diverse shapes, and the effects of the level of the groundwater table on the dynamic stiffness of a rigid rectangular foundation in the water-saturated transversely isotropic layered stratum are studied.

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

A comparative study on the spatial hierarchy by the form of the basestone in ancient architecture between Baekje, Silla and Japan (고대 백제.신라.일본의 초석 형태에 따른 공간위계 비교연구)

  • Han, Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.6
    • /
    • pp.3-10
    • /
    • 2008
  • The basestone is a kind of foundation part of the building and can be said to deliver the loads from the upper part to ground. It is the explanation of structural role for the basestone. But the basestone has been used as the decorative element in a building. So this study is on design of the basestone. First the type division can be studied as form of the basestones. Also the investigation of development aspect of them needs to as times and the spatial characteristics. Another goal of this study is on the design characteristics of the basestone from the comparison to the basestone in ancient Japan was initiated in the architectural technology from Korea. The results are as follows. In Baekje rectangular basestones were used in static space for ceremony and circular ones were used in dynamic space for life. Also the basestones with joojwa(smoothing surface for sitting on column) were used for accessory buildings rather than main. In Silla the same type of basestone was made in a temple but according to hierarchy of buildings the sizes of them seem to have been different. The other side in Japan carved basestones were for the main buildings and for the accessory natural stones were used to. According to the hierarchy of the buildings the kinds of stones were different.

The M6.4 Lefkada 2003, Greece, earthquake: dynamic response of a 3-storey R/C structure on soft soil

  • Giarlelis, Christos;Lekka, Despina;Mylonakis, George;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.257-277
    • /
    • 2011
  • An evaluation is presented of the response of a 3-storey R/C structure during the destructive Lefkada earthquake of 14/08/2003. Key aspects of the event include: (1) the unusually strong levels of ground motion (PGA = 0.48 g, $SA_{max}$ = 2.2 g) recorded approximately 10 km from fault, in downtown Lefkada; (2) the surprisingly low structural damage in the area; (3) the very soft soil conditions ($V_{s,max}$ = 150 m/s). Structural, geotechnical and seismological aspects of the earthquake are discussed. The study focuses on a 3-storey building, an elongated structure of rectangular plan supported on strip footings, that suffered severe column damage in the longitudinal direction, yet minor damage in the transverse one. Detailed spectral and time-history analyses highlight the interplay of soil, foundation and superstructure in modifying seismic demand in the two orthogonal directions of the building. It is shown that soil-structure interaction may affect inelastic seismic response and alter the dynamic behavior even for relatively flexible systems such as the structure at hand.

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF