References
- Akavci, S.S. (2014), "Thermal buckling analysis of functionally graded plates on an elastic foundation according to a hyperbolic shear deformation theory", Mech. Compos. Mater., 50(2), 197-212. https://doi.org/10.1007/s11029-014-9407-1.
- Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037.
- Bodaghi, M. and Saidi, A. (2011), "Thermoelastic buckling behavior of thick functionally graded rectangular plates", Arch. Appl. Mech., 81(11), 1555-1572. https://doi.org/10.1007/s00419-010-0501-0.
- Bouhadra, A., Benyoucef, S., Tounsi, A., Bernard, F., Bouiadjra, R.B. and Sid Ahmed Houari, M. (2015), "Thermal buckling response of functionally graded plates with clamped boundary conditions", J. Therm. Stress., 38(6), 630-650. https://doi.org/10.1080/01495739.2015.1015900.
- Bouiadjra, M.B., Ahmed Houari, M.S. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stress., 35(8), 677-694. https://doi.org/10.1080/01495739.2012.688665.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Wahab, M.A. (2022), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Matt., 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Do, V.N.V., Tran, M.T. and Lee, C.H. (2018), "Nonlinear thermal buckling analyses of functionally graded plates by a mesh-free radial point interpolation method", Eng. Anal. Bound. Elem., 87, 153-164. https://doi.org/10.1016/j.enganabound.2017.12.001.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
- Ghamkhar, M., Harbaoui, I., Hussain, M., Ayed, H., Khadimallah, M.A. and Alshoaibi, A. (2022), "Structural monitoring of layered FGM distribution ring support: Analysis with and without internal pressure", Adv. Nano Res., 12(3), 337-344. https://doi.org/10.12989/anr.2022.12.3.337.
- Guptaa, S. and Chalak, H.D. (2022), "Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory", Steel Compos. Struct., 45(4), 483-499. https://doi.org/10.12989/scs.2022.45.4.483
- Hao, Y., Zhang, W. and Yang, J. (2011), "Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method", Compos. Part B: Eng., 42(3), 402-413. https://doi.org/10.1016/j.compositesb.2010.12.010.
- Hao, Y.X., Chen, L.H., Zhang, W. and Lei, J.G. (2008), "Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate", J. Sound Vib., 312(4), 862-892. https://doi.org/10.1016/j.jsv.2007.11.033.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022). Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
- Javaheri, R. and Eslami, M.R. (2002a), "Thermal buckling of functionally graded plates", AIAA J., 40(1), 162-169. https://doi.org/10.2514/2.1626.
- Javaheri, R. and Eslami, M.R. (2002b), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
- Kiani, Y., Bagherizadeh, E. and Eslami, M. (2011), "Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions)", ZAMM-J. Appl. Math. Mech., 91(7), 581-593. https://doi.org/10.1002/zamm.201000184.
- Kumar, H.S. and Kattimani, S. (2022). "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477.
- Lanhe, W. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64(2), 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004.
- Man, Y. (2022). "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151.
- Matsunaga, H. (2009), "Thermal buckling of functionally graded plates according to a 2D higher-order deformation theory", Compos. Struct., 90(1), 76-86. https://doi.org/10.1016/j.compstruct.2009.02.004.
- Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/sem.2019.72.4.513.
- Merdaci, S., Tounsi, A. and Bakora, A. (2016), "A novel four variable refined plate theory for laminated composite plates", Steel Compos. Struct., 22(4), 713-732. https://doi.org/10.12989/scs.2016.22.4.713.
- Moradi, A., Poorveis, D. and Khajehdezfuly, A. (2022). "Buckling of FGM elliptical cylindrical shell under follower lateral pressure", Steel Compos. Struct., 45(2), 175-191. https://doi.org/10.12989/scs.2022.45.2.175.
- Nguyen-Xuan, H., Tran, L. V., Nguyen-Thoi, T. and Vu-Do, H. C. (2011), "Analysis of functionally graded plates using an edge-based smoothed finite element method", Compos. Struct., 93(11), 3019-3039. https://doi.org/10.1016/j.compstruct.2011.04.028
- Pasternak, P. (1954), "On a new method of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturi Po Stroitelstuve i Arkhitekture.
- Polat, A. and Kaya, Y. (2022). "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247.
- Radwan, A.F. (2019), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 21(1), 289-319. https://doi.org/10.1177/1099636217693557.
- Saad, M. and Hadji, L. (2022), "Thermal buckling analysis of porous fgm plates", Mater. Today: Proc., 53, 196-201. https://doi.org/10.1016/j.matpr.2021.12.550.
- Singh, S. and Harsha, S. (2020), "Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation", Int. J. Mech. Mater. Des., 16(4), 707-731. https://doi.org/10.1007/s10999-020-09498-7.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Tao, C. and Dai, T. (2021), "Analyses of thermal buckling and secondary instability of post-buckled S-FGM plates with porosities based on a meshfree method", Appl. Math. Model., 89, 268-284. https://doi.org/10.1016/j.apm.2020.07.032.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.
- Wang, Y. and Zhang, W. (2022), "On the thermal buckling and postbuckling responses of temperature-dependent graphene platelets reinforced porous nanocomposite beams", Compos. Struct., 296, 115880. https://doi.org/10.1016/j.compstruct.2022.115880.
- Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rucksicht auf ihre Anwendung in der Technik, fur polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc. H. Dominicus.
- Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: An assessment of a simple refined nth-order shear deformation theory", Compos. Part B: Eng., 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014.
- Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stress., 36(9), 869-894. https://doi.org/10.1080/01495739.2013.770356.
- Zenkour, A.M. and Mashat, D.S. (2010), "Thermal buckling analysis of ceramic-metal functionally graded plates", Nat. Sci., 02(09), 968-978. https://doi.org/10.4236/ns.2010.29118.
- Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017.
- Zhang, L. and Ko, T.H. (2022). Bending and buckling of spinning FG nanotubes based on NSGT", Comput. Concrete, 30(4), 243. https://doi.org/10.12989/cac.2022.30.4.243.
- Zhang, L., Zhu, P. and Liew, K. (2014), "Thermal buckling of functionally graded plates using a local Kriging meshless method", Compos. Struct., 108, 472-492. https://doi.org/10.1016/j.compstruct.2013.09.043.
- Zhang, W, Hao, Y. and Yang, J. (2012), "Nonlinear dynamics of FGM circular cylindrical shell with clamped-clamped edges", Compos. Struct., 94(3), 1075-1086. https://doi.org/10.1016/j.compstruct.2011.11.004.
- Zhang, Wei, Hao, Y., Guo, X. and Chen, L. (2011), "Complicated nonlinear responses of a simply supported FGM rectangular plate under combined parametric and external excitations", Meccanica, 47, 985-1014. https://doi.org/10.1007/s11012-011-9491-4.
- Zhang, Wei, Yang, J. and Hao, Y. (2010), "Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory", Nonlin. Dyn., 59, 619-660. https://doi.org/10.1007/s11071-009-9568-y.
- Zhang, Z., Yang, Q. and Jin, C. (2022). Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation", Steel Compos. Struct., 43(5), 581-601. https://doi.org/10.12989/scs.2022.43.5.581.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Mechanical and thermal buckling analysis of functionally graded plates", Compos. Struct., 90(2), 161-171. https://doi.org/10.1016/j.compstruct.2009.03.005 .