• Title/Summary/Keyword: rectangular electrode

Search Result 49, Processing Time 0.026 seconds

Electrochemical characterization of supercapacitors based on carbons derived from Sorona activated by ZnCl2

  • Jisha, M.R.;Christy, Maria;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Carbons derived by the pyrolysis of Sorona activated by $ZnCl_2$ in the ratio of 1:20 and non-porogen Sorona carbons are used as the electrode materials in asymmetric electrochemical supercapacitors and electrochemical behavior is investigated. Scanning electron microscopy (SEM) reveals the porogen free carbons show a flake-like structure and the $ZnCl_2$-treated Sorona carbons have a loose, disjoint structure without any particular shape. Cyclic voltammetric (CV) studies show specific prolate rectangular shape and gives good capacitive properties.

The electrical and optical properties of Xe plasma in flat lamp (평판형 광원에서 제논(Xe) 플라즈마의 전기적 광학적 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Chio, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.60-64
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important, distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp, we tested the discharge from 100 Torr to 300 Torr pressure, the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Electrical and Optical Properties of Xe Plasma in Flat Lamp (평판형 광원에서 제논 플라즈마의 전기적 및 광학적 특성)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.71-74
    • /
    • 2006
  • Discharge of the flat lamp lighting source research arc requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important. distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp. we tested the discharge from 100 Torr to 300 Torr pressure. the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Electrical and Optical properties of Xe gas in flat lighting source (제논(Xe) 가스를 사용한 평판형 광원에서의 전기 및 광학적 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2190-2192
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important. distance of discharge electrode is 5.5mm and width is 16.5mm, we measured electron temperature and electron density measured with single langmuir probe in flat lamp. we tested the discharge from 100 Torr to 300 Torr pressure. the Pulse is rectangular pulse with frequency 20kHz and Duty ratio 20%. Resultly, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Xe Plasma property with flat lamp by Langmuir probe (정전탐침법을 사용한 평판형 광원의 제논(Xe)플라즈마 특성 연구)

  • Pack, Gwang-Hyeon;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Yang-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.572-573
    • /
    • 2005
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness. life time. efficiency of flat lamp and plasma diagnosis of the flat lamp lighting source to understand property of lighting source is very important. When a distance of discharge electrode is 5.5mm and width is 16.5mm. we measured electron temperature and electron density measured with single Langmuir probe in flat lamp. We tested the discharge from 100 Torr to 300 Torr pressure. The pulse type was rectangular with frequency 20kHz and duty ratio was 20%. In result. electron temperature decreases and electron density increased as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

A Study on PTV analysis of AC Electroosmotic Flows in the Microchannel with Coplanar electrodes (마이크로 채널 내 교류 전기 삼투 유동에 대한 PTV해석)

  • Heo, Hyeung-Seok;Kang, Sang-Mo;Suh, Yong-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.113-116
    • /
    • 2006
  • AC-electroosmosis is one of the electrokinetic forces leading to phenomena peculiar in the microfluidics. This paper shows particle deformation in the microchannel with rectangular electrodes on the bottom wall for the AC-electroosmotic flows. We make a PDMS microchannnel with ITO electrodes To measure velocity distributions of the particles we used a three-dimensional particle tracking velocimetry (micro-PTV) technique this method is Particle tracking by interpolation the diffraction pattern ring diameter variations with the defocusing distances of base particle locations. we induce a function of frequency at the electrode. We find the velocity of particles is the most at the edge of the electrodes and Particles move to side wall or center of the channel for the bottom and middle.

  • PDF

Numerical Analysis and Experimental Investigation of Duct Flows of an MHD Propulsion System (사각형의 MHD 추진 덕트 내부유동에 관한 수치해석 및 실험적 연구)

  • J.W. Lee;S.J. Lee;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.83-93
    • /
    • 1995
  • A numerical and experimental investigation on the flow characteristics in the rectangular duct of an MHD propulsion system has been carried out. In numerical analysis, three-dimensional, steady-state, viscous, incompressible electrically conducting fluid flow under the influence of uniformly applied magnetic and electric fields was treated using a finite-difference technique. It was found from the numerical study that when the Lorentz force is weak, the typical parabolic velocity profile under a laminar flow condition changes to an M shaped profile near the electrode region and that the pressure increases linearly from the inlet toward the outlet of the MHD duct under constant electro-magnetic field. In experiment, thrust of the MHD propulsion system can be controlled easily by varying electrode current. The measured pressure gradient along the MHD duct is proportional to the Lorentz force, which is in agreement with the numerical results.

  • PDF

Fabrication and Characterization of a GaN Light-emitting Diode (LED) with a Centered Island Cathode

  • Park, Yun Soo;Lee, Hwan Gi;Yang, Chung-Mo;Kim, Dong-Seok;Bae, Jin-Hyuk;Cho, Seongjae;Lee, Jung-Hee;Kang, In Man
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Uniform spreading of injection current in light-emitting diodes (LEDs) is one of the crucial requirements for better device performances. It is reported that non-uniform current spreading leads to low output power, high current crowding, heating, and reliability degradation of the LED device. This paper reports on the effects of different surface and electrode geometries in the LEDs. To increase the output power of LEDs and reduce the series resistance, a rectangular-type LED (RT-LED) with a centered island cathode has been fabricated and investigated by comparison with a conventional LED (CV-LED). The performances of RT-LEDs were prominently enhanced via uniform current spreading and low current crowding. Performances in terms of increased output power and lower forward voltage of simulated RT-LEDs are much superior to those of CV-LEDs. Based on these results, we investigated the correlation between device geometries and optical characteristics through the fabricated CV and RT-LEDs. The measured output power and forward voltage of the RT-LEDs at 100 mA are 64.7% higher and 8% smaller compared with those of the CV-LEDs.

Interstitial Hyperthermia by Radiofrequency Needle Electrode System : Phantom and Canine Brain Studies (8 MHz 라디오파를 이용한 자입식 온열치료 -조직등가물질을 통한 온도분포 및 개 뇌실질의 조직병리 변화에 관한 연구-)

  • Lee, Hyung-Sik;Chu, Sung-Sil;Sung, Jin-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh-John-Juhn-Kyu;Kim, Young-Soo;Kim, Sun-Ho;Chung, Song-Sup;Han, Eun-Kyung;Kim, Tae-Seung
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • An interstitial radiofrequency needle electrode system was constructed for interstitial heating of brain tissue. Radiofrequency electrodes with Thermotron RF 8 were tested in an agar phantom and in a normal canine brain to determine how variations in physical factors affected temperature distributions. Temperature distributions were checked after heating with 1 mm diameter needle electrode implants on the corners of 1 and 2 cm squares in a phantom and plot isotherms for various electrodes arrangement. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures ($90\%$ relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature ($90\%$ relative SAR using Tm). We found that radiofrequency electrodes could be selected to match the length of the heating area without affecting its performance. The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50min to generate tissue temperatures of $43^{\circ}C$. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from $7\sim30$days. The acute stage (immediately after heating) was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter and by some polymer-phonuclear leukocytes infiltration. The appearance of lipid-laden macrophages surrounding the area of liquefaction necrosis was demonstrated in all three sacrificed dogs. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (Days 30) canine brain.

  • PDF

Removal of Gaseous Toluene using a Plate-type Dielectric Barrier Discharge Reactor (평판형 전극으로 구성된 유전체 배리어 방전 반응기를 이용한 톨루엔 저감 특성)

  • Park, Jae-Hong;Jo, Yoon-Shin;Yoon, Ki-Young;Byeon, Jeong-Hoon;Hwang, Jung-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.641-648
    • /
    • 2008
  • A plate-type dielectric barrier discharge (DBD) reactor was designed and tested for removal of gaseous toluene. The DBD reactor consisted of 9 parallel plate electrodes, four of which were grounded. An AC voltage of rectangular waveform ($5{\sim}8.5kV$, $60{\sim}1,000Hz$), was applied to the other five electrodes. The gaseous toluene passed through the DBD reactor and its concentration was measured by a real-time gas analyzer. The carbon monoxide (CO) and carbon dioxide ($CO_2$) which were produced by decomposition of toluene in the DBD reactor, were sampled and analyzed by a micro gas chromatography. The maximum toluene removal efficiency was 51.4%.