• Title/Summary/Keyword: rectangular cylinders

Search Result 47, Processing Time 0.019 seconds

NUMERICAL ANALYSIS OF FLOW AROUND RECTANGULAR CYLINDERS WITH VARIOUS SIDE RATIOS

  • Rokugou Akira;Okajima Atsushi;Gutierrez Isaac
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0, was carried out for Reynolds number of 10³ by using a multi-directional finite difference method on a regular-arranged multi-grid. The predicted results are in good agreement with the experimental data. It is found that fluid dynamic characteristics of rectangular cylinders alternate between the high-pressure mode and the low-pressure mode of the base pressure for D/H=0.2-0.6. We show that this phenomenon is induced by the change of the flow pattern around rectangular cylinders.

Numerical Analysis of Flow around Rectangular Cylinders with Various Side Ratios

  • Rokugou Akira;Okajima Atsushi;Kamiyama Kohji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.36-37
    • /
    • 2003
  • Three-dimensional numerical analysis of the flow around rectangular cylinders with various side ratios, D/H, from 0.2 to 2.0 is carried out for Reynolds number of 1000 by using multi-directional finite difference method in multi-grid. The predicted results are well compared with the experimental data. It is found that fluid dynamics characteristics alternate between high pressure mode. and low pressure mode of the base pressure for rectangular cylinder of D/H=0.2-0.6.

  • PDF

Flow-pattern identification around two rectangular cylinders with aspect ratio of 0.5 in tandem arrangement

  • Yang, Letian;Gu, Zhifu;Zhao, Xuejun;Zhang, Weimin
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.179-192
    • /
    • 2013
  • The flow around two rectangular cylinders with aspect ratio of 0.5 in a tandem arrangement, was investigated using pressure measurements (in a wind tunnel) and flow visualizations (in a water tunnel) in the range of P/h from 0.6 to 4.0. Four flow patterns were identified, and processes of shear layers wrapping around, the shear layer reattachment, vortices wrapping around and vortices impingement, were observed. Mean and rms pressure distributions, flow visualizations and Strouhal numbers were presented and discussed. The paper revealed that the variations of Strouhal numbers were associated with the shear layers or vortex interference around two cylinders.

Lattice-Boltzmann Simulation of Fluid Flow around a Pair of Rectangular Cylinders

  • Taher, M.A.;Baek, Tae-Sil;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-70
    • /
    • 2009
  • In this paper, the fluid flow behavior past a pair of rectangular cylinders placed in a two dimensional horizontal channel has been investigated using Lattice-Boltzmann Method(LBM). The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK(Bhatnagar-Gross-Krook)model. Streamlines, velocity, vorticity and pressure contours are provided to analyze the important characteristics of the flow field for a wide range of non dimensional parameters that present in our simulation. Special attention is paid to the effect of spacing(d) between two cylinders and the blockage ratio A(=h/H), where H is the channel height and h is the rectangular cylinder height. for different Reynolds numbers. The first cylinder is called upstream cylinder and the second one as downstream cylinder. The downstream fluid flow fields have been more influenced by its blockage ratios(A) and Reynolds numbers(Re) whereas the upstream flow patterns(in front of downstream cylinder) by the gap length(d) between two cylinders. Moreover, it is observed that after a certain gap, both upstream and downstream flow patterns are almost similar size and shape. The simulation result has been compared with analytical solution and it is found to be in excellent agreement.

An empirical model for amplitude prediction on VIV-galloping instability of rectangular cylinders

  • Niu, Huawei;Zhou, Shuai;Chen, Zhengqing;Hua, Xugang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.85-103
    • /
    • 2015
  • Aerodynamic forces of vortex-induced vibration and galloping are going to be coupled when their onset velocities are close to each other, which will induce the cross-wind amplitudes of the structures increased continuously with ever-increasing wind velocities. The main purpose of the present work is going to propose an empirical formula to predict the response amplitude of VIV-galloping interaction. Firstly, two typical mathematical models for the coupled oscillations, i.e., Tamura & Shimada model and Parkinson & Corless model are comparatively summarized. Then, the key parameter affecting response amplitude is determined through comparative numerical simulations with Tamura & Shimada model. For rectangular cylinders with the side ratio from 0.5 to 2.5, which are actually prone to develop the VIV and galloping induced interaction responses, an empirical amplitude prediction formula is proposed after regression analysis on comprehensively collected experimental data with the predetermined key parameter.

Analysis of Scattering Characteristics of a Rectangular Waveguide with Conducting Half Cylinders using the Mode Matching Method (모드매칭법을 이용한 금속의 Half Cylinder가 있는 구형 도파관의 산란 특성 해석)

  • 김원기;천동완;김상태;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.962-971
    • /
    • 2004
  • In this paper, we present the numerical analysis method for analyzing scattering characteristics of a rectangular waveguide with the conducting half cylinder using the mode matching method and compute scattering characteristics of a waveguide according to the rotation and changing radius of the half cylinder. Also, in conjunction with the generalized scattering method, the proposed method can be easily applied to a rectangular waveguide with cascade structure of conducting half cylinders. From the simulated result of a two pole filter, resonance frequency could be controlled by the rotation of half cylinders. The simulated result shows good agreement with the HFSS's result. The proposed structure and analysis method are easily applied to the design of waveguide components with conducting half cylinders.

Turbulence effects on surface pressures of rectangular cylinders

  • Li, Q.S.;Melbourne, W.H.
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.253-266
    • /
    • 1999
  • This paper presents the effects of free-stream turbulence on streamwise surface pressure fluctuations on two-dimensional rectangular cylinders. Particular attention is given to possible effects of turbulence integral scale on fluctuation and peak pressures. The mean, standard deviation, peak pressure coefficients, spectra and cross-correlation of fluctuating pressures were measured to investigate the nature of the separation and reattachment phenomenon in turbulent flows over a wide range of turbulence intensity and integral scale.

Computation of Flow around Single Rectangular Cylinders with a Splitter Plate (분리판이 부착된 사각형실린더 주위의 유동계산)

  • 박외철
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.30-36
    • /
    • 1993
  • Incompressible, unsteady flow around various single rectangular cylinders of side ratios ranging from 0.005 to 2.0 immersed in uniform flow is computed by the vortex tracing me thod. Results with and without a splitter plate pttached to the rear center of the cylinder are compared. The objective of this study is to investigate predictability of the effects of the splitter plate on drag by the method. Without the splitter plate, computed drag coefficients for cylinders of large side ratios are in good agreement with measured values, but are over predicted for those of small side ratios. With the splitter plate, drag coefficient is reduced significantly due to suppression of vortex growing near the base and interaction between the separated shear layers.

  • PDF

A Study on the Axial Behavior of the Concrete Cylinders Confined by Carbon Fiber Sheets (탄소섬유쉬트로 횡구속된 콘크리트 공시체의 압축 거동에 관한 연구)

  • Hwang, Jin-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • Recently the Carbon Fiber Sheet(CFS) is widely used for strengthening damaged RC structures. Strengthening compression members such as column can increase ductility and strength due to the confinement effect. In this experiment, the behavior of concrete cylinders confined by CFS was examined. The confinement pressure is increased linearly as axial stress is increased in low axial stress, and the confinement effect of CFS was rapidly developed after near maximum axial stress, thus axial strength and ductility was improved. As the ratio of CPS is increased, concrete cylinders failed due to local fracture of CFS. The confinement effect of circular section is more efficient than that of rectangular section. And significant improvement of axial strength, axial strain, transverse strain at failure is observed in circular section. This is because in rectangular section the local fracture of CFS near corner may be occured, thus the strain efficiency ratio must be considered for RC structures with CFS.

  • PDF

Role of coupled derivatives on flutter instabilities

  • Matsumoto, Masaru;Abe, Kazuhiro
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.175-181
    • /
    • 1998
  • Torsional flutter occurs at 2D rectangular cylinders with side ratios B/D smaller than about 8 or 10. On the other hand, slender cylinders indicate the occurrence of coupled flutter, which means the coupled derivatives of slender cylinders have more significant role for flutter instability than that of bluffer ones. In this paper, based upon so called "Step-by-step analysis", it is clarified the coupled derivatives stabilize torsional flutter instability of bluffer cylinders (e.x. B/D=5), while they destabilize torsional flutter or coupled flutter instabilities of mores slender cylinders. The boundary of them exists between B/D=5 and 8.