• 제목/요약/키워드: recovery under load

Search Result 73, Processing Time 0.022 seconds

Stress Behaviors of Superheater Tubes under Load Change Operation in HRSG (배열회수보일러의 부하변동 운전에 따른 과열기 튜브들의 응력거동)

  • Chong, Chae-Hon;Song, Jung-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.33-39
    • /
    • 2008
  • The purpose of this study is not only to evaluate the stress behavior of tubes in superheater in HRSG during the load change operation but also to find root causes of failure from stress behavior. Firstly, temperature during operation was collected to perform stress analysis from actual HRSG. Part load and full load stress analysis which can be represented as the whole load change operations were performed using commercial finite element software. The possibility that can lead to tubes failure is found by stress analysis and its results is compared with metallurgical mircrostructure of failed tube which was taken from actual HRSG.

A Study on Automatic Compensation for Head Lamps Cut-off Line Under Load Variation (차량 하중 변동에 따른 전조등 컷오프라인 자동 보상에 대한 연구)

  • Kim, Ki-Hyeon;Kim, Jun-Hyeon;Byeon, Dong-Kyu;Lee, Dong-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • Vehicle lightings are very important for safe driving during night time. Since the eye recovery time after an exposure to oncoming headlights would take after several seconds, the aiming point of vehicle head lamps have to pass safety requirements. Despite the fact that vehicle inclination is variable with vehicle load conditions, the head lamps aiming point is usually fixed at a constant position which is set by car manufacturer. Consequently, vehicle head lamps under varying load conditions often make people in the opposing vehicle uncomfortable, and even worse, can cause an accident. This paper presents an active vehicle lighting mechanism to automatically adjust its aiming point, or cut-off line, in order to compensate the change in vehicle inclination resulting from load variations. The effectiveness of the proposed method is demonstrated through a set of simulations and experiments with a real vehicle.

Dynamic Simulation of Heat Recovery Steam Generator (폐열회수 보일러의 동특성 시뮬레이션)

  • Lee, Ki-Hyun;Lee, Dong-Su;Cho, Chang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.847-852
    • /
    • 2001
  • A thorough understanding of the transient behavior during load following and start-up is essential in the design and operation of an heat recovery steam generator(HRSG). During this period of time, material that is exposed to high temperature and experiences a large temperature variation is subject to high thermal stress. APESS(Advanced Plant Engineering & Simulation System) is a dynamic simulation software for power plant which is under being developed by Doosan Heavy Industries & Construction Co., Ltd. This paper present the introduction of APESS and the result of simulation for an heat recovery steam generator.

  • PDF

Implementation of Zero-Ripple Line Current Induction Cooker using Class-D Current-Source Resonant Inverter with Parallel-Load Network Parameters under Large-Signal Excitation

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1251-1264
    • /
    • 2018
  • The systematic and effective design method of a Class-D current-source resonant inverter for use in an induction cooker with zero-ripple line current is presented. The design procedure is based on the principle of the Class-D current-source resonant inverter with a simplified load network model that is a parallel equivalent circuit. An induction load characterization is obtained from a large-signal excitation test-bench based on parallel load network, which is the key to an accurate design for the induction cooker system. Accordingly, the proposed scheme provides a systematic, precise, and feasible solution than the existing design method based on series-parallel load network under low-signal excitation. Moreover, a zero-ripple condition of utility-line input current is naturally preserved without any extra circuit or control. Meanwhile, a differential-mode input electromagnetic interference (EMI) filter can be eliminated, high power quality in utility-line can be obtained, and a standard-recovery diode of bridge-rectifier can be employed. The step-by-step design procedure explained with design example. The devices stress and power loss analysis of induction cooker with a parallel load network under large-signal excitation are described. A 2,500-W laboratory prototype was developed for $220-V_{rms}/50-Hz$ utility-line to verify the theoretical analysis. An efficiency of the prototype is 96% at full load.

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

A study on the electric power recovery in generator load test (부하 시험 발전기 전력회수에 관한 연구)

  • Lee, Myoungho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.403-408
    • /
    • 2014
  • Lots of electric power has been wasted through the load bank usually in the container boxes during the generator load test of the ship and offshore plant in the new ship building. Therefore in this research, the quantity of wasted electric power through generator load test under construction was investigated on big shipbuilding yard and quantity of electric power that can be recovered is analyzed when produced electric power during the generator load test is connected to KEPCO Grid, according to laboratory's experiment result where recovers electric power produced from small generator connected to KEPCO Grid.

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

Effect on Thermal Performance of Superheater Module under Part Load Operation in HRSG (배열회수보일러의 부분부하 운전에 따른 유동불균일이 과열기의 성능에 미치는 영향)

  • Chong, Chae-Hon;Song, Jung-Il
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The purpose of this study is to apprehend the behavior of exhaust gas flow from gas turbine during part load operation in Heat Recovery Steam Generator. As a first step of this work, internal flow characteristics according to HRSG types were examined by CFD analysis. Next step, tube temperature according to gas turbine 53% and 100% load conditions were calculated by results of CFD and those were compared with temperature data gathered from real plant. Finally, thermal performance due to part load operation was calculated to estimate the influence of heat transfer in superheater. In addition, new type of device is suggested to eliminate the uneven temperature distribution of tubes during part load operation.

Application of Multi-step Undervoltage Load Shedding Schemes to the KEPCO System

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Choy, Young-Do;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.476-484
    • /
    • 2009
  • This paper deals with improvements to the special protection schemes (SPS) which have been applied to the low probability and high impact contingencies in the Korea Electric Power Corporation (KEPCO) system since 2004. Among them, the SPS for voltage instability in the Seoul metropolitan area is considered in this paper, and is a form of event-based undervoltage load shedding with a single-step scheme. Simulation results based upon a recent event that occurred on 765kV lines show that the current setting values of the SPS have to be revised and enhanced. In addition, by applying response-based multi-step undervoltage load shedding (UVLS) schemes to severe contingencies in the system, more effective results than those of the existing single-step SPS can be obtained. Centralized and distributed UVLS schemes are considered in the simulation. ULTC-based load recovery models and over excitation limiters (OXL) for the KEPCO system are also included in the long-term voltage instability studies.

Experimental Validation on Performance of Waste-heat-recovery Boiler with Water Injection (물분사 폐열회수 보일러의 효용성에 대한 실험적 검증)

  • Jaehun Shin;Taejoon Park;Hyunseok Cho;Junsang Yoo;Seoksu Moon;Changeon Lee
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2023
  • The waste-heat-recovery boiler with water spray (HR-B/WS) applies the heat exchange between the inlet air and exhaust gas with the water spray into the inlet air. The evaporation of water in the inlet air promotes heat recovery from the exhaust gas so that thermal efficiency can be improved by the enhanced condensing effect. The NOx emission can also be reduced by lowering the flame temperature due to the dilution effect of the water. In this study, the validity of this concept is examined by the practical boiler test performed with a 24 kW condensing boiler under the full load condition according to the water injection amount. The theoretical amount of water injection is calculated under the assumption of full evaporation of the sprayed water, which is calculated as 50 g/min. Since the injected water cannot evaporate fully in the actual system, the maximum water spray amount is set as 100 g/min. The results showed that the water injection can increase the thermal efficiency up to 95.59% and reduce NOx and CO emissions simultaneously to 8.9 ppm and 35 ppm at 0% of O2. Although the heat energy loss increased due to the unevaporated water, the increase in water injection amount caused higher thermal efficiency due to the increased amount of the evaporated water.