• Title/Summary/Keyword: recorded ground motions

Search Result 110, Processing Time 0.023 seconds

Large Ground Motion Related to Crustal Structure in Korea (한반도 지각 구조로 인한 이상 강진동 관측 및 해석)

  • Kim, Kwang-Hee;Kang, Su-Young;Min, Dong-Joo;Suk, Bong-Chool;Ryoo, Yong-Gyu
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.559-566
    • /
    • 2008
  • Ground shaking recorded during the January 20, 2007, $M_L$ 4.8 Odaesan earthquake (Korea) were used to investigate the role of the crustal structure in producing a strong ground motion, which includes the identification of the phases responsible for the strong ground motion and their implications for seismic hazard assessment. Analyses of strong-motion data together with waveform simulation revealed that critical and post-critical reflections from the crust-mantle boundary are responsible for the abnormal ground motions. This result demonstrates that the crustal structure should be taken into consideration in studies of seismic hazard mitigation even in the areas of relatively low seismicity.

Correlation of response spectral values in Japanese ground motions

  • Jayaram, Nirmal;Baker, Jack W.;Okano, Hajime;Ishida, Hiroshi;McCann, Martin W. Jr.;Mihara, Yoshinori
    • Earthquakes and Structures
    • /
    • v.2 no.4
    • /
    • pp.357-376
    • /
    • 2011
  • Ground motion models predict the mean and standard deviation of the logarithm of spectral acceleration, as a function of predictor variables such as earthquake magnitude, distance and site condition. Such models have been developed for a variety of seismic environments throughout the world. Some calculations, such as the Conditional Mean Spectrum calculation, use this information but additionally require knowledge of correlation coefficients between logarithmic spectral acceleration values at multiple periods. Such correlation predictions have, to date, been developed primarily from data recorded in the Western United States from active shallow crustal earthquakes. This paper describes results from a study of spectral acceleration correlations from Japanese earthquake ground motion data that includes both crustal and subduction zone earthquakes. Comparisons are made between estimated correlations for Japanese response spectral ordinates and correlation estimates developed from Western United States ground motion data. The effect of ground motion model, earthquake source mechanism, seismic zone, site conditions, and source to site distance on estimated correlations is evaluated and discussed. Confidence intervals on these correlation estimates are introduced, to aid in identifying statistically significant differences in correlations among the factors considered. Observed general trends in correlation are similar to previous studies, with the exception of correlation of spectral accelerations between orthogonal components, which is seen to be higher here than previously observed. Some differences in correlations between earthquake source zones and earthquake mechanisms are observed, and so tables of correlations coefficients for each specific case are provided.

Dynamic performance of a composite building structure under seismic ground motions

  • Tsai, Meng-Hao;Zhang, Junfei;Song, Yih-Ping;Lu, Jun-Kai
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.179-191
    • /
    • 2018
  • This study is aimed at investigating the dynamic performance of a composite building structure under seismic ground motions. The building structure is an official fire department building located in southern Taiwan. It is composed of a seven-story reinforced concrete (RC) and an eight-story steel reinforced concrete (SRC) frame. Both frames share a common basement and are separated by expansion joints from the first to the seventh floor. Recorded floor accelerations of the building structure under eight earthquakes occurring during the period from 2011 to 2013 were examined in this paper. It is found that both frames had similar floor acceleration amplifications in the longitudinal direction, while the SRC frame revealed larger response than the RC frame in the transverse direction. Almost invariant and similar fundamental periods under the eight earthquakes in both directions were obtained from their transfer functions. Furthermore, numerical time-history simulations were carried out for the building structure under the most intensive earthquake. It is realized that the seismic response of the composite building was dominated by the first translational mode in each horizontal direction. Higher modes did not significantly contribute to the structural response. The conventional Rayleigh damping model could be appropriately applied to the time-history simulations under bi-directional excitations. Approximate floor acceleration envelopes were obtained with a compound RC and SRC structural model by using the average damping ratios determined from the different structural arrays.

Response Characteristics of Site-specific using Aftershock Event (여진을 통해 살펴본 대상구간의 응답특성)

  • Ahn, Jae-Kwang;Cho, Seongheum;Jeon, Young-Soo;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.51-64
    • /
    • 2018
  • Korean peninsula is known to be far from the plate boundary and not to generate large-scale earthquakes. However, earthquakes recently occurred in Gyeongju (2016/09/12, $M_L=5.8$) and Pohang (2017/11/15, $M_L=5.4$). The interest in earthquake engineering has increased, and various studies are actively underway by recently events. However, the seismic station network in Korea is less dense than that of the western U.S., resulting in the lack of data for detailed analyses of earthquakes. Therefore, KMA (Korea Meteorological Administration) set up temporary seismic stations and recorded ground motions from aftershocks. In this study, characteristics of Pohang seismic propagation and generation of bedrock motion are analyzed through the aftershock ground motion records at both permanent and temporary stations, as well as through the collected geological structure and site information. As a result, the response at Mangcheon-Li shows evidences of basin effects from both geology structures and measured aftershock motions.

Inelastic Hysteretic Characteristics of Demand Spectrum -Focused on Elasto Perfectly Plastic Model- (요구스펙트럼의 비탄성이력특성 -완전탄소성모델을 중심으로-)

  • 이현호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.367-374
    • /
    • 2000
  • This study investigates the effect of hysteretic characteristics to the Inelastic Demand Spectrum (IDS) which was expressed by an acceleration(Sa) and a displacement response spectrum (Sd). Elasto Perfectly Plastic(EPP) model is used in this study and inelastic demand spectrum (Sa vs, Sd) are obtained from a given target ductility ratio. For a given target ductility ratio IDS can be obtained by using nonlinear time history analysis of single degree of system with forth five recorded earthquake ground motions for stiff soil site. The effect EPP model under demand spectrum is investigated by ductility factor and natural frequency. According to the results obtained in this study IDS has dependency on ductility factor and natural frequency.

  • PDF

Earthquake Response Analysis of A Large Scale Seismic Test Structure (대형지진시험구조물의 지진응답해석)

  • Yun, Chung-Band;Park, Kyoung-Lae;Kim, Jae-Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.107-113
    • /
    • 1995
  • This paper presents the earthquake response analysis results on the Large-Scale Seismic Test (LSST)structure which was built at Hualien in Taiwan. The seismic analysis is carried out using a computer code KIESSI, which has been developed based on the three-dimensional axisymmetric finite element method incorporating infinite elements for the far field soil region. The soil and structural properties obtained from the post-correlation study of the forced vibration tests (FVT) are utilized to predict seismic responses. The ground accelerations recorded at a site 56.5 m from the test structure are used as control motions. It has been found that the predicted responses are reasonably compared with the observed responses.

  • PDF

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

On the wind and earthquake response of reinforced concrete chimneys

  • Turkeli, Erdem;Karaca, Zeki;Ozturk, Hasan Tahsin
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.559-567
    • /
    • 2017
  • Slender structures like reinforced concrete (RC) chimneys are severely damaged or collapsed during severe wind storms or strong ground motions all over the world. Today, with the improvement in technology and industry, most factories need these slender structures with increasing height and decreasing in shell thickness causing vulnerable to winds and earthquakes. Main objectives in this study are to make structural wind and earthquake analysis of RC chimneys by using a well-known international standard CICIND 2001 and real recorded time history accelerations and to clarify weak points of these tall and slender structures against these severe natural actions. Findings of this study show that maximum tensile stress and shear stress approximately increase 103.90% and 312.77% over or near the openings on the body of the RC chimneys that cause brittle failure around this region of openings.

Comparison of Energy Demand in Multi-Story Structures and Equivalent SDOF Systems (다층 구조물과 등가 단자유도계의 에너지 요구량 비교)

  • 최현훈;원영섭;김진구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.19-26
    • /
    • 2003
  • In energy-based design, the structures are generally transformed into equivalent SDOF systems to obtain the input and the dissipated energy. In this study the energy demands in multi-story structures were compared with that of equivalent single degree of freedom systems to validate the transformation method. Three-, eight-, and twenty-story steel moment-resisting frames and buckling restrained braced frames are compared with those of equivalent single degree of freedom systems. Sixty earthquake ground motions recorded in different soil conditions were used to compute the input and hysteretic energy demands in model structures. According to the analysis results, in 3 and 8-story structures the hysteretic energy demands computed in the equivalent SDOF structures are compatible with those computed in the original MDOF structures, while in the 20-story structures the transformed equivalent structures underestimated the hysteretic energy demands.

  • PDF

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.