• Title/Summary/Keyword: recommender

Search Result 526, Processing Time 0.048 seconds

Using Fuzzy Rating Information for Collaborative Filtering-based Recommender Systems

  • Lee, Soojung
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.42-48
    • /
    • 2020
  • These days people are overwhelmed by information on the Internet thus searching for useful information becomes burdensome, often failing to acquire some in a reasonable time. Recommender systems are indispensable to fulfill such user needs through many practical commercial sites. This study proposes a novel similarity measure for user-based collaborative filtering which is a most popular technique for recommender systems. Compared to existing similarity measures, the main advantages of the suggested measure are that it takes all the ratings given by users into account for computing similarity, thus relieving the inherent data sparsity problem and that it reflects the uncertainty or vagueness of user ratings through fuzzy logic. Performance of the proposed measure is examined by conducting extensive experiments. It is found that it demonstrates superiority over previous relevant measures in terms of major quality metrics.

Strategies for Selecting Initial Item Lists in Collaborative Filtering Recommender Systems

  • Lee, Hong-Joo;Kim, Jong-Woo;Park, Sung-Joo
    • Management Science and Financial Engineering
    • /
    • v.11 no.3
    • /
    • pp.137-153
    • /
    • 2005
  • Collaborative filtering-based recommendation systems make personalized recommendations based on users' ratings on products. Recommender systems must collect sufficient rating information from users to provide relevant recommendations because less user rating information results in poorer performance of recommender systems. To learn about new users, recommendation systems must first present users with an initial item list. In this study, we designed and analyzed seven selection strategies including the popularity, favorite, clustering, genre, and entropy methods. We investigated how these strategies performed using MovieLens, a public dataset. While the favorite and popularity methods tended to produce the highest average score and greatest average number of ratings, respectively, a hybrid of both favorite and popularity methods or a hybrid of demographic, favorite, and popularity methods also performed within acceptable ranges for both rating scores and numbers of ratings.

Accuracy improvement of a collaborative filtering recommender system using attribute of age (목표고객의 연령속성을 이용한 협력적 필터링 추천 시스템의 정확도 향상)

  • Lee, Seog-Hwan;Park, Seung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In this paper, the author devised new decision recommendation ordering method of items attributed by age to improve accuracy of recommender system. In conventional recommendation system, recommendation order is decided by high order of preference prediction. However, in this paper, recommendation accuracy is improved by decision recommendation order method that reflect age attribute of target customer and neighborhood in preference prediction. By applying decision recommendation order method to recommender system, recommendation accuracy is improved more than conventional ordering method of recommendation.

Custom-made Golf Insole Recommender System for Optimizing The Foot Balance During Golf Swing

  • Lee, Kyung-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.11
    • /
    • pp.89-95
    • /
    • 2015
  • In this paper, we propose the method and development of custom-made golf insole recommender system to optimize the foot balance during golf swing. This system development procedures are as follows : (1) Using the measured data of the golf swing, the analysis of the individual golf hitting and balance will be done. (2) Based on the analysis results, the system will recommend the golf custom-made insole to optimize the individual balance using recommender algorithm. (3) After the golf custom-made insole is recommended, the modeling and design of the recommended insole is processed. Golf custom-made insole will be possible to reduce the excessive shaking and increase the lower-body supporting force. Therefore, we have expected that the recommended insole will improve the swing results through the optimization of golf swing balance. In the future, it is necessary to secure the higher validity and reliability through the more diverse experiments and research.

Development of Web-based Intelligent Recommender Systems using Advanced Data Mining Techniques (개선된 데이터 마이닝 기술에 의한 웹 기반 지능형 추천시스템 구축)

  • Kim Kyoung-Jae;Ahn Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.3
    • /
    • pp.41-56
    • /
    • 2005
  • Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.

  • PDF

Optimal Diversity of Recommendation List for Recommender Systems based on the Users' Desire Diversity

  • Mehrjoo, Saeed;Mehrjoo, Mehrdad;Hajipour, Farahnaz
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.3
    • /
    • pp.31-39
    • /
    • 2019
  • Nowadays, recommender systems suggest lists of items to users considering not only accuracy but also diversity and novelty. However, suggesting the most diverse list of items to all users is not always acceptable, since different users prefer and/or tolerate different degree of diversity. Hence suggesting a personalized list with a diversity degree considering each user preference would improve the efficiency of recommender systems. The main contribution and novelty of this study is to tune the diversity degree of the recommendation list based on the users' variety-seeking feature, which ultimately leads to users' satisfaction. The proposed approach considers the similarity of users' desire diversity as a new parameter in addition to the usual similarity of users in the state-of-the-art collaborative filtering algorithm. Experimental results show that the proposed approach improves the personal diversity criterion comparing to the closest method in the literature, without decreasing accuracy.

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

U-Net-based Recommender Systems for Political Election System using Collaborative Filtering Algorithms

  • Nidhi Asthana;Haewon Byeon
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2024
  • User preferences and ratings may be anticipated by recommendation systems, which are widely used in social networking, online shopping, healthcare, and even energy efficiency. Constructing trustworthy recommender systems for various applications, requires the analysis and mining of vast quantities of user data, including demographics. This study focuses on holding elections with vague voter and candidate preferences. Collaborative user ratings are used by filtering algorithms to provide suggestions. To avoid information overload, consumers are directed towards items that they are more likely to prefer based on the profile data used by recommender systems. Better interactions between governments, residents, and businesses may result from studies on recommender systems that facilitate the use of e-government services. To broaden people's access to the democratic process, the concept of "e-democracy" applies new media technologies. This study provides a framework for an electronic voting advisory system that uses machine learning.

A Study on the Features of the Classified Customers through Pre-evaluation on the Recommender System (추천시스템에서 사전평가에 의해 선별된 고객의 특성에 관한 연구)

  • Lim, Jae-Hwa;Lee, Seok-Jun
    • Korean Business Review
    • /
    • v.20 no.2
    • /
    • pp.105-118
    • /
    • 2007
  • Recommender system is the tool for E-commerce company based on the internet for increasing their sales ratio in the market. Recommender system suggests the list of items which night be wanted by customers. This list generated by the result of customers' preference prediction through the prediction algorithm automatically. Recommender system will be able to offer not only the important information for marketing strategy but also reduce the cost of customers' information retrieval trough the analysis of customers' purchase patterns and features. But there are several problems like as the extension of the users and items scales and if the recommendation to customers generated by unreliable recommender system makes the customer royalty to the system to weaken. In this study, we propose the criterion for pre-evaluation on the prediction performance only using the preference ratings on the items which are rated by customers before prediction process and we study the features of customers who are classified through this classification criterion.

  • PDF

Product Recommender System for Online Shopping Malls using Data Mining Techniques (데이터 마이닝을 이용한 인터넷 쇼핑몰 상품추천시스템)

  • Kim, Kyoung-Jae;Kim, Byoung-Guk
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.191-205
    • /
    • 2005
  • This paper presents a novel product recommender system as a tool fur differentiated marketing service of online shopping malls. Ihe proposed model uses genetic algorithnt one of popular global optimization techniques, to construct a personalized product recommender systen The genetic algorinun may be useful to recommendation engine in product recommender system because it produces optimal or near-optimal recommendation rules using the customer profile and transaction data. In this study, we develop a prototype of WeLbased personalized product recommender system using the recommendation rules fi:om the genetic algorithnL In addition, this study evaluates usefulness of the proposed model through the test fur user satisfaction in real world.

  • PDF