• Title/Summary/Keyword: recommender

Search Result 526, Processing Time 0.023 seconds

A Sequential Pattern Analysis for Dynamic Discovery of Customers' Preference (고객의 동적 선호 탐색을 위한 순차패턴 분석: (주)더페이스샵 사례)

  • Song, Ki-Ryong;Noh, Soeng-Ho;Lee, Jae-Kwang;Choi, Il-Young;Kim, Jae-Kyeong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.195-209
    • /
    • 2008
  • Customers' needs change every moment. Profitability of stores can't be increased anymore with an existing standardized chain store management. Accordingly, a personalized store management tool needs through prediction of customers' preference. In this study, we propose a recommending procedure using dynamic customers' preference by analyzing the transaction database. We utilize self-organizing map algorithm and association rule mining which are applied to cluster the chain stores and explore purchase sequence of customers. We demonstrate that the proposed methodology makes an effect on recommendation of products in the market which is characterized by a fast fashion and a short product life cycle.

Design and Implementation of an Intelligent System for Personalized Contents Recommendation on Smart TVs (스마트 TV 상의 개인화된 콘텐츠 추천을 위한 지능형 시스템 설계 및 구현)

  • Lee, Sang Hoon;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.73-79
    • /
    • 2013
  • Recently, smart TVs have widely spread in our daily lives. However, it is difficult for users to find proper TV contents among a lot of TV and application contents because of inconvenience of input devices compared with those of smart phones or smart pads, so there are some problems with very low utilization of the smart functionalities of smart TVs. We suggest a personalized contents recommender system on smart TVs to resolve these problems and help for users to search appropriate contents easily and quickly in this research. We design and implement an intelligent system for personalized contents recommendation on the smart TVs based on multi-dimensional analysis considering user profiles and preferences, watching patterns of TV programs, and TV contents use statistics of TV users.

An Improved Personalized Recommendation Technique for E-Commerce Portal (E-Commerce 포탈에서 향상된 개인화 추천 기법)

  • Ko, Pyung-Kwan;Ahmed, Shekel;Kim, Young-Kuk;Kamg, Sang-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.9
    • /
    • pp.835-840
    • /
    • 2008
  • This paper proposes an enhanced recommendation technique for personalized e-commerce portal analyzing various attitudes of customer. The attitudes are classifies into three types such as "purchasing product", "adding product to shopping cart", and "viewing the product information". We implicitly track customer attitude to estimate the rating of products for recommending products. We classified user groups which have similar preference for each item using implicit user behavior. The preference similarity is estimated using the Cross Correlation Coefficient. Our recommendation technique shows a high degree of accuracy as we use age and gender to group the customers with similar preference. In the experimental section, we show that our method can provide better performance than other traditional recommender system in terms of accuracy.

Location Recommendation Customize System Using Opinion Mining (오피니언마이닝을 이용한 사용자 맞춤 장소 추천 시스템)

  • Choi, Eun-jeong;Kim, Dong-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2043-2051
    • /
    • 2017
  • Lately, In addition to the increased interest in the big data field, there is also a growing interest in application fields through the processing of big data. Opinion Mining is a big data processing technique that is widely used in providing personalized service to users. Based on this, in this paper, textual review of users' places is processed by Opinion mining technique and the sentiment of users was analyzed through k-means clustering. The same numerical value is given to users who have a similar category of sentiment classified as a clustering operation. We propose a method to show recommendation contents to users by predicting preference using collaborative filtering recommendation system with assigned numerical values and marking contents with markers on the map in order of places with high predicted value.

Incorporating Time Constraints into a Recommender System for Museum Visitors

  • Kovavisaruch, La-or;Sanpechuda, Taweesak;Chinda, Krisada;Wongsatho, Thitipong;Wisadsud, Sodsai;Chaiwongyen, Anuwat
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • After observing that most tourists plan to complete their visits to multiple cultural heritage sites within one day, we surmised that for many museum visitors, the foremost thought is with regard to the amount of time is to be spent at each location and how they can maximize their enjoyment at a site while still balancing their travel itinerary? Recommendation systems in e-commerce are built on knowledge about the users' previous purchasing history; recommendation systems for museums, on the other hand, do not have an equivalent data source available. Recent solutions have incorporated advanced technologies such as algorithms that rely on social filtering, which builds recommendations from the nearest identified similar user. Our paper proposes a different approach, and involves providing dynamic recommendations that deploy social filtering as well as content-based filtering using term frequency-inverse document frequency. The main challenge is to overcome a cold start, whereby no information is available on new users entering the system, and thus there is no strong background information for generating the recommendation. In these cases, our solution deploys statistical methods to create a recommendation, which can then be used to gather data for future iterations. We are currently running a pilot test at Chao Samphraya national museum and have received positive feedback to date on the implementation.

Reducing Noise Using Degree of Scattering in Collaborative Filtering System (협력적 여과 시스템에서 산포도를 이용한 잡음 감소)

  • Ko, Su-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.549-558
    • /
    • 2007
  • Collaborative filtering systems have problems when users rate items and the rated results depend on their feelings, as there is a possibility that the results include noise. The method proposed in this paper optimizes the matrix by excluding irrelevant ratings as information for recommendations from a user-item matrix using dispersion. It reduces the noise that results from predicting preferences based on original user ratings by inflecting the information for items and users on the matrix. The method excludes the ratings values of the utmost limits using a percentile to supply the defects of coefficient of variance and composes a weighted user-item matrix by combining the user coefficient of variance with the median of ratings for items. Finally, the preferences of the active user are predicted based on the weighted matrix. A large database of user ratings for movies from the MovieLens recommender system is used, and the performance is evaluated. The proposed method is shown to outperform earlier methods significantly.

Through the Looking Glass: The Role of Portals in South Korea's Online News Media Ecology

  • Dwyer, Tim;Hutchinson, Jonathon
    • Journal of Contemporary Eastern Asia
    • /
    • v.18 no.2
    • /
    • pp.16-32
    • /
    • 2019
  • Media manipulation of breaking news through article selection, ranking and tweaking of social media data and comment streams is a growing concern for society. We argue that the combination of human and machine curation on media portals marks a new period for news media and journalism. Although intermediary platforms routinely claim that they are merely the neutral technological platform which facilitates news and information flows, rejecting any criticisms that they are operating as de facto media organisations; instead, we argue for an alternative, more active interpretation of their roles. In this article we provide a contemporary account of the South Korean ('Korean') online news media ecology as an exemplar of how contemporary media technologies, and in particular portals and algorithmic recommender systems, perform a powerful role in shaping the kind of news and information that citizens access. By highlighting the key stakeholders and their positions within the production, publication and distribution of news media, we argue that the overall impact of the major portal platforms of Naver and Kakao is far more consequential than simply providing an entertaining media diet for consumers. These portals are central in designing how and which news is sourced, produced and then accessed by Korean citizens. From a regulatory perspective the provision of news on the portals can be a somewhat ambiguous and moving target, subject to soft and harder regulatory measures. While we investigate a specific case study of the South Korean experience, we also trace out connections with the larger global media ecology. We have relied on policy documents, stakeholder interviews and portal user 'walk throughs' to understand the changing role of news and its surfacing on a distinctive breed of media platforms.

K-Nearest Neighbor Course Recommender System using Collaborative Filtering (협동적 필터링을 이용한 K-최근접 이웃 수강 과목 추천 시스템)

  • Sohn, Ki-Rack;Kim, So-Hyun
    • Journal of The Korean Association of Information Education
    • /
    • v.11 no.3
    • /
    • pp.281-288
    • /
    • 2007
  • Collaborative filtering is a method to predict preference items of a user based on the evaluations of items provided by others with similar preferences. Collaborative filtering helps general people make smart decisions in today's information society where information can be easily accumulated and analyzed. We designed, implemented, and evaluated a course recommendation system experimentally. This system can help university students choose courses they prefer to. Firstly, the system needs to collect the course preferences from students and store in a database. Users showing similar preference patterns are considered into similar groups. We use Pearson correlation as a similarity measure. We select K-nearest students to predict the unknown preferences of the student and provide a ranked list of courses based on the course preferences of K-nearest students. We evaluated the accuracy of the recommendation by computing the mean absolute errors of predictions using a survey on the course preferences of students.

  • PDF

A Movie Recommendation Method Using Rating Difference Between Items (항목 간 선호도 차이를 이용한 영화 추천 방법)

  • Oh, Se-Chang;Choi, Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2602-2608
    • /
    • 2013
  • User-based and item-based method have been developed as the solutions of the movie recommendation problem. However, these methods are faced with the sparsity problem and the problem of not reflecting user's rating respectively. In order to solve these problems, there is a research on the combination of the two methods using the concept of similarity. In reality, it is not free from the problem of sparsity, since it has a lot of parameters to be calculated. In this study, we propose a recommendation method using rating difference between items in order to complement this problem. This method is relatively free from the problem of sparsity, since it has less parameters to be calculated. And it can get more accurate results by reflecting the users rating to calculate the parameters. In experiments for the proposed method, the initial error is large, but the performance has been quickly stabilized after. In addition, it showed a 0.0538 lower average error compared to the existing method using similarity.

A Study On Customized Products and Services in Smart Environments (스마트환경에 따른 고객 맞춤 제품 및 서비스에 관한 연구)

  • Chang, Seog-Ju
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.1
    • /
    • pp.167-174
    • /
    • 2015
  • This study examines the Personalized Oriented Customized and services in smart environments. In addition to The structure of industry is currently smart environment shifting from the manufacturing industry focusing on goods production to service industry merging and combining service and marketing. The companies are placing a higher value on the customer needs to gain a competitive edge with creation of new business model. The key dilemma in mass customization and service, though, is how product customization can be realized without increasing production cost significantly. The purpose of this study is to explore new product development strategies that facilitate mass customization and service. Specifically, we propose Crowdsourcing marketing, Digital experience technology, Recommender Systems, 3D printing technology, Flexible manufacturing systems and UX based PSS(Product-Service Systems) in new product development processes as enabling strategies for mass customization and service in smart environments.

  • PDF