• Title/Summary/Keyword: recommendation systems

Search Result 839, Processing Time 0.021 seconds

Applying Consistency-Based Trust Definition to Collaborative Filtering

  • Kim, Hyoung-Do
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.366-375
    • /
    • 2009
  • In collaborative filtering, many neighbors are needed to improve the quality and stability of the recommendation. The quality may not be good mainly due to the high similarity between two users not guaranteeing the same preference for products considered for recommendation. This paper proposes a consistency definition, rather than similarity, based on information entropy between two users to improve the recommendation. This kind of consistency between two users is then employed as a trust metric in collaborative filtering methods that select neighbors based on the metric. Empirical studies show that such collaborative filtering reduces the number of neighbors required to make the recommendation quality stable. Recommendation quality is also significantly improved.

Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment (유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천)

  • Kim, Jae-Kyeong;Oh, Hee-Young;Kwon, Oh-Byung
    • Journal of Information Technology Services
    • /
    • v.6 no.2
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

Improved Cold Item Recommendation Accuracy by Applying an Recommendation Diversification Method (추천 다양화 방법을 적용한 콜드 아이템 추천 정확도 향상)

  • Han, Jungkyu;Chun, Sejin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1242-1250
    • /
    • 2022
  • When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.

클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석

  • Lee, Hong-Ju
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.135-140
    • /
    • 2008
  • Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

  • PDF

Enhancing Music Recommendation Systems Through Emotion Recognition and User Behavior Analysis

  • Qi Zhang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.177-187
    • /
    • 2024
  • 177-Existing music recommendation systems do not sufficiently consider the discrepancy between the intended emotions conveyed by song lyrics and the actual emotions felt by users. In this study, we generate topic vectors for lyrics and user comments using the LDA model, and construct a user preference model by combining user behavior trajectories reflecting time decay effects and playback frequency, along with statistical characteristics. Empirical analysis shows that our proposed model recommends music with higher accuracy compared to existing models that rely solely on lyrics. This research presents a novel methodology for improving personalized music recommendation systems by integrating emotion recognition and user behavior analysis.

Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering (선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템)

  • Shin, Taeksoo;Chang, Kun-Nyeong;Park, Youjin
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.4
    • /
    • pp.1-14
    • /
    • 2006
  • This study proposed a customer preference estimation model for production recommendation and a method to enhance the performance of product recommendation using the estimated customer preference information. That is, we suggested customer preference estimation model to estimate exactly customer's product preference with his behavior. This model shows the relationship of customer's behaviors with his preferences. The proposed estimation model is optimized by learning the relative weights of customer's behavior variables to have an effect on his preference and enables to estimate exactly his preference. To validate our proposed models, we collected virtual book store data and then made a comparative analysis of our proposed models and a benchmark model in terms of performance results of collaborative filtering for product recommendation. The benchmark model means a prior preference weighting model. The results of our empirical analysis showed that our proposed model performed better results than the benchmark model.

  • PDF

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls (인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.177-191
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering is the most successful recommendation technology. Web usage mining and clustering analysis are widely used in the recommendation field. In this paper, we propose several hybrid collaborative filtering-based recommender procedures to address the effect of web usage mining and cluster analysis. Through the experiment with real e-commerce data, it is found that collaborative filtering using web log data can perform recommendation tasks effectively, but using cluster analysis can perform efficiently.

  • PDF

Personalized Book Recommendation System based on Semantic Web (시맨틱웹 기반 개인 맞춤형 도서 추천 시스템)

  • Kim, Jin-Chun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1097-1104
    • /
    • 2011
  • In this paper, we propose a semantic web approach for personalized book recommendation. Our approach takes advantage of the content-based recommendation and improves its disadvantage that users should input their interesting fields into all book search systems they use. Our approach provides the sharing of users' profile with their interesting fields by enabling user's interesting fields to be described over each book classification ontology of various book information providers. We also provide a middleware that manages users' profiles written in RDF and analizes similarity between user's interesting field and each concept over the book classification ontology. Our approach provide better performance than traditional keyword-based search by sharing the user's profile among book recommendation systems.