• 제목/요약/키워드: recommendation model

검색결과 697건 처리시간 0.024초

온라인 추천정보와 선호 유사성의 역할: 2단계 구매 의사 결정 모델을 중심으로 (The Role of Online Social Recommendation and Similarity of Preferences: In Two Stage Purchase Decision Making Process)

  • 이재영;고혜민
    • 지식경영연구
    • /
    • 제16권3호
    • /
    • pp.149-169
    • /
    • 2015
  • In this study, we try to understand the role of online social recommendation and the similarity of preferences between the recommender and the recommendee on consumer decisions in the framework of the two stage purchase decision-making process. Applying construal level theory to our context, we expect that the role of social recommendation and the similarity of preferences would vary over the stages in the two-stage decision making process. To test our hypotheses, we collected the data through an incentive compatible experiment, and analyzed the data with nested logit model. As a result, we found that the role of online social recommendation varies over the stages. Consumers take recommendation from similar others at the stage of consideration set formation, but no longer consider it at the stage of final choice. Consumers take recommendation from dissimilar others at the stage of consideration set formation. At the stage of final choice, however, consumers avoid choosing the option recommended by dissimilar others. The results of our study enrich the understanding about the role of social recommendation, and have implication to marketing practitioners who attempt to make online social recommendation system more efficient.

Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance

  • Hyung Su Kim;Sangwon Lee
    • Asia pacific journal of information systems
    • /
    • 제29권4호
    • /
    • pp.752-770
    • /
    • 2019
  • The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.

장소 추천을 위한 방문 간격 보정 (Temporal Interval Refinement for Point-of-Interest Recommendation)

  • 김민석;이재길
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.86-98
    • /
    • 2018
  • 장소추천시스템은 시간과 장소가 주어졌을 때, 사용자에게 가장 흥미로운 장소를 추천해주는 시스템을 말한다. 스마트폰과 사물인터넷(IoT), 장소기반 소셜네트워크(LBSN)의 발달에 힘입어 사용자들의 방대한 양의 장소 방문 데이터를 축적하게 되었고, 이를 통해 특정한 시점에 사용자들이 원하는 장소를 적절히 추천해줄 수 있는 장소추천시스템의 중요성이 부각되었다. 장소추천시스템은 사용자의 방문(Check-in) 횟수라는 암시적 피드백(Implicit feedback) 데이터에서 사용자의 시퀀스 선호(Sequential preference)를 이끌어내어 높은 성능을 내기 위한 연구들이 제안되었다. 하지만 시퀀스 선호 정보를 활용하여 모델을 구성하는 경우, 데이터의 밀도가 더욱 희박해지고 이에 따라 적은 수의 데이터에 기반하여 구축되는 모델의 성능이 왜곡될 가능성이 존재한다. 본 연구에서는 신뢰도(Confidence)에 기반하여 방문 주기를 보정하는 방법론을 제안한다. 사용자의 시퀀스 선호 정보로부터 도출된 장소 간 방문 시간전이간격(temporal transition interval)을 활용하여 추천시스템을 구성할 때, 해당 방법론을 통하여 데이터의 왜곡을 보정함으로써 추천시스템의 성능을 향상하였다. 제안하는 방법의 효과를 검증하기 위하여, Foursquare와 Gowalla의 데이터셋을 이용한 비교실험을 통해 제안하는 방법론의 우수성을 보였다.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

Affection-enhanced Personalized Question Recommendation in Online Learning

  • Mingzi Chen;Xin Wei;Xuguang Zhang;Lei Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3266-3285
    • /
    • 2023
  • With the popularity of online learning, intelligent tutoring systems are starting to become mainstream for assisting online question practice. Surrounded by abundant learning resources, some students struggle to select the proper questions. Personalized question recommendation is crucial for supporting students in choosing the proper questions to improve their learning performance. However, traditional question recommendation methods (i.e., collaborative filtering (CF) and cognitive diagnosis model (CDM)) cannot meet students' needs well. The CDM-based question recommendation ignores students' requirements and similarities, resulting in inaccuracies in the recommendation. Even CF examines student similarities, it disregards their knowledge proficiency and struggles when generating questions of appropriate difficulty. To solve these issues, we first design an enhanced cognitive diagnosis process that integrates students' affection into traditional CDM by employing the non-compensatory bidimensional item response model (NCB-IRM) to enhance the representation of individual personality. Subsequently, we propose an affection-enhanced personalized question recommendation (AE-PQR) method for online learning. It introduces NCB-IRM to CF, considering both individual and common characteristics of students' responses to maintain rationality and accuracy for personalized question recommendation. Experimental results show that our proposed method improves the accuracy of diagnosed student cognition and the appropriateness of recommended questions.

선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템 (Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering)

  • 신택수;장근녕;박유진
    • 지능정보연구
    • /
    • 제12권4호
    • /
    • pp.1-14
    • /
    • 2006
  • 본 연구는 상품추천을 위해 필요한 고객 선호도 추정모형(Customer Preference Estimation Model)을 제안하고, 이러한 선호도 추정결과에 따른 선호도 정보를 이용하여 궁극적으로 상품추천의 성과를 제고시키기 위한 방법을 제시하였다. 즉, 제품에 대한 고객 선호 영향요인들과 고객 선호도와의 관계를 모형화 함으로써 고객 선호도를 보다 더 정확히 추정할 수 있는 새로운 선호도 추정모형을 제안하였다. 이 제안모형은 선호도 영향요인들의 상대적인 가중치를 선호도 최적화 학습을 통해 도출함으로써, 보다 정확한 선호도 측정을 가능하게 해 준다. 한편, 이 모형의 타당성을 검증하기 위해서 본 연구에서는 가상서점 고객들을 대상으로 고객 선호도 정보를 수집한 후, 본 제안모형을 적용했을 때의 협업 필터링의 추천성과와 사전가중치 부여방식인 기존 선호도 계산식을 이용했을 경우의 추천성과를 비교 분석하였다. 이에 대한 실증분석 결과는 본 연구에서 제안한 선호도 추정모형을 적용했을 때의 협업 필터링의 성과가 기존 선호도 계산방식을 적용했을 때의 협업 필터링의 성과보다 더 우수한 것으로 나타났다.

  • PDF

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • 통합자연과학논문집
    • /
    • 제14권4호
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

Robustness Analysis of a Novel Model-Based Recommendation Algorithms in Privacy Environment

  • Ihsan Gunes
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1341-1368
    • /
    • 2024
  • The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.