• Title/Summary/Keyword: recombinant human bone morphogenetic protein-4

Search Result 42, Processing Time 0.024 seconds

Vertical bone augmentation using collagenated or non-collagenated bone substitute materials with or without recombinant human bone morphogenetic protein-2 in a rabbit calvarial model

  • Hyun-Chang Lim;Kyeong-Won Paeng;Ui-Won Jung;Goran I. Benic
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.6
    • /
    • pp.429-443
    • /
    • 2023
  • Purpose: The aim of this study was to determine 1) the bone-regenerative effect of porcine bone block materials with or without collagen matrix incorporation, 2) the effect of a collagen barrier, and 3) the effect of adding recombinant human bone morphogenetic protein-2 (rhBMP-2) to the experimental groups. Methods: Four treatment modalities were applied to rabbit calvaria: 1) deproteinized bovine bone mineral blocks (DBBM), 2) porcine bone blocks with collagen matrix incorporation (PBC), 3) porcine bone blocks alone without collagen matrix incorporation (PB), and 4) PBC blocks covered by a collagen membrane (PBC+M). The experiments were repeated with the addition of rhBMP-2. The animals were sacrificed after either 2 or 12 weeks of healing. Micro-computed tomography (micro-CT), histologic, and histomorphometric analyses were performed. Results: Micro-CT indicated adequate volume stability in all block materials. Histologically, the addition of rhBMP-2 increased the amount of newly formed bone (NB) in all the blocks. At 2 weeks, minimal differences were noted among the NB of groups with or without rhBMP-2. At 12 weeks, the PBC+M group with rhBMP-2 presented the greatest NB (P<0.05 vs. the DBBM group with rhBMP-2), and the PBC and PB groups had greater NB than the DBBM group (P>0.05 without rhBMP-2, P<0.05 with rhBMP-2). Conclusions: The addition of rhBMP-2 enhanced NB formation in vertical augmentation using bone blocks, and a collagen barrier may augment the effect of rhBMP-2.

Bone regenerative effects of recombinant human bone morphogenetic protein-2 employed protein transduction domain (Protein transduction domain을 이용한 recombinant human bone morphogenetic protein-2의 골재생효과)

  • Jung, Sung-Won;Kim, Nam-Hee;Yook, Jong-In;Kim, Chang-Sung;Kim, Hyung-Jun;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.497-509
    • /
    • 2007
  • Bone morphogenetic proteins(BMPs) are regarded as members of the transforming growth $factor-{\beta}$ superfamily with characteristic features in their amino acid sequences. A number of studies have demonstrated the biologic activities of BMPs, which include the induction of cartilage and bone formation. Recently there was a attempt to overcome a limitation of mass production, and economical efficieny of rh-BMPs. The method producing PTD by using bacteria have advantages of acquiry a mass of proteins. Hences, a new treatment which deliver protein employed by protein transduction domain(PTD) has been tried. The purpose of this study was to evaluate the bone regenerative effect of TATBMP-2 and TAT-HA2-BMP-2 employed by PTD from HlV-1 TAT protein for protein translocation in the rat calvarial model. An 8mm calvarial, critical size osteotomy defect was created in each of 32 male Spraque-Dawley rats(weight $250{\sim}300g$). The animals were divided into 4 groups of 32 animals each (4 animals/group/healing interval). The defect was treated with TATBMP-2/ACS(Absorbable collagen sponge) (TATBMP-2 0.1mg/ml), TAT-HA2-BMP-2/ACS(TAT-HA2-BMP-2 0.1mg/ml), ACS alone or left untreated for surgical control(negative control). The rats were sacrificed at 2 or 8 weeks postsurgery, and the results were evaluated histologically. The results were as follows: New bone formation were not significantly greater in the TATBMP-2/ACS group relative to negative, and positive control groups. New bone was evident at the defect sites in TAT-HA2-BMP-2/ACS group relative to negative, positive control and TATBMP-2 groups. There were a little bone regeneration in TATBMP-2 groups. While, enhanced local bone formation were observed in TAT-HA2-BMP-2 group. But, The results was not the same in all rat defects. Therefore, further investigations are required to develop a method. which disperse homogenously, and adhere to target cells.

Regenerative effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) after sequestrectomy of medication-related osteonecrosis of the jaw (MRONJ)

  • Min, Song-Hee;Kang, No-Eul;Song, Seung-Il;Lee, Jeong-Keun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.3
    • /
    • pp.191-196
    • /
    • 2020
  • Objectives: Beyond the original application approved by the U.S. Food and Drug Administration, recombinant human bone morphogenetic protein-2 (rhBMP-2) is used for medication-related osteonecrosis of the jaw (MRONJ) treatment because of its bone remodeling enhancement properties. The purpose of the study was to investigate the bone formation effect of rhBMP-2/absorbable collagen sponge (ACS) in patients with MRONJ. Materials and Methods: In this retrospective cohort study, 26 female patients diagnosed with MRONJ and who underwent mandibular sequestrectomy at Ajou University Dental Hospital from 2010 to 2018 were included. The experimental group was composed of 18 patients who received rhBMP-2/ACS after sequestrectomy, while the control group was composed of 8 patients who did not receive rhBMP-2/ACS after sequestrectomy. A total dose of 0.5 mg of rhBMP-2 was used in the experimental group at a concentration of 0.5 mg/mL. Follow-up panoramic X-rays were taken immediately after the surgery and more than 6 months after the surgery. Using those X-rays, a radiographic index of bone defect area was calculated using the modified Ihan Hren method, which measures radiographic density of the normal bone and the defect site. Results: This study suggests that rhBMP-2 contributes to new bone formation. The mean radiographic index immediately after surgery and more than 6 months after the surgery for the experimental group was 68.4% and 79.8%, respectively. The mean radiographic index immediately after surgery and more than 6 months after the surgery for the control group was 73.4% and 76.7%, respectively (Wilcoxon signed rank test, P>0.05). The mean radiographic index increased 11.4% in the experimental group and 3.27% in the control group (Mann-Whitney U-test, P<0.05). Conclusion: Based on the results, use of rhBMP-2/ACS on bone defect sites after sequestrectomy could be a successful strategy for treatment of MRONJ patients.

Novel analysis model for implant osseointegration using ectopic bone formation via the recombinant human bone morphogenetic protein-2/macroporous biphasic calcium phosphate block system in rats: a proof-of-concept study

  • Park, Jung-Chul;Lee, Jong-Bin;Daculsi, Guy;Oh, Sang-Yeop;Cho, Kyoo-Sung;Im, Gun-Il;Kim, Byung-Soo;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.4
    • /
    • pp.136-143
    • /
    • 2012
  • Purpose: The osseointegration around titanium mini-implants installed in macroporous biphasic calcium phosphate (MBCP) blocks was evaluated after incubation with recombinant human bone morphogenetic protein-2 (rhBMP-2) in an ectopic subcutaneous rat model. Methods: Mini-implants (${\varphi}1.8{\times}12$ mm) were installed in MBCP blocks (bMBCPs, $4{\times}5{\times}15$ mm) loaded with rhBMP-2 at 0.1 mg/mL, and then implanted for 8 weeks into subcutaneous pockets of male Sprague-Dawley rats (n=10). A histomorphometric analysis was performed, and the bone-to-implant contact (BIC) and bone density were evaluated. Results: Significant osteoinductive activity was induced in the rhBMP-2/bMBCP group. The percentage of BIC was $41.23{\pm}4.13%$ (mean${\pm}$standard deviation), while bone density was $33.47{\pm}5.73%$. In contrast, no bone formation was observed in the bMBCP only group. Conclusions: This model represents a more standardized tool for analyzing osseointegration and bone healing along the implant surface and in bMBCPs that excludes various healing factors derived from selected animals and defect models.

Sinus augmentation using rhBMP-2-loaded synthetic bone substitute with simultaneous implant placement in rabbits

  • Joo, Myung-Jae;Cha, Jae-Kook;Lim, Hyun-Chang;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.2
    • /
    • pp.86-95
    • /
    • 2017
  • Purpose: The aim of this study was to determine the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2)-loaded synthetic bone substitute on implants that were simultaneously placed with sinus augmentation in rabbits. Methods: In this study, a circular access window was prepared in the maxillary sinus of rabbits (n=5) for a bone graft around an implant (${\varnothing}3{\times}6mm$) that was simultaneously placed anterior to the window. Synthetic bone substitute loaded with rhBMP-2 was placed on one side of the sinus to form the experimental group, and saline-soaked synthetic bone substitute was placed on the other side of the sinus to form the control group. After 4 weeks, sections were obtained for analysis by micro-computed tomography and histology. Results: Volumetric analysis showed that the median amount of newly formed bone was significantly greater in the BMP group than in the control group ($51.6mm^3$ and $46.6mm^3$, respectively; P=0.019). In the histometric analysis, the osseointegration height was also significantly greater in the BMP group at the medial surface of the implant (5.2 mm and 4.3 mm, respectively; P=0.037). Conclusions: In conclusion, an implant simultaneously placed with sinus augmentation using rhBMP-2-loaded synthetic bone substitute can be successfully osseointegrated, even when only a limited bone height is available during the early stage of healing.

Improvement of the osteogenic potential of ErhBMP-2-/EGCG-coated biphasic calcium phosphate bone substitute: in vitro and in vivo activity

  • Hwang, Jae-ho;Oh, Seunghan;Kim, Sungtae
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.2
    • /
    • pp.114-126
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate the enhancement of osteogenic potential of biphasic calcium phosphate (BCP) bone substitute coated with Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) and epigallocatechin-3-gallate (EGCG). Methods: The cell viability, differentiation, and mineralization of osteoblasts was tested with ErhBMP-2-/EGCG solution. Coated BCP surfaces were also investigated. Standardized, 6-mm diameter defects were created bilaterally on the maxillary sinus of 10 male New Zealand white rabbits. After removal of the bony windows and elevation of sinus membranes, ErhBMP-2-/EGCG-coated BCP was applied on one defect in the test group. BCP was applied on the other defect to form the control group. The animals were sacrificed at 4 or 8 weeks after surgery. Histologic and histometric analyses of the augmented graft and surrounding tissue were performed. Results: The 4-week and 8-week test groups showed more new bone (%) than the corresponding control groups (P<0.05). The 8-week test group showed more new bone (%) than the 4-week test group (P<0.05). Conclusions: ErhBMP-2-/EGCG-coated BCP was effective as a bone graft material, showing enhanced osteogenic potential and minimal side effects in a rabbit sinus augmentation model.

Improvement of osteogenic potential of biphasic calcium phosphate bone substitute coated with two concentrations of expressed recombinant human bone morphogenetic protein 2

  • Choi, Hyun-Min;Park, No-Je;Jamiyandorj, Otgonbold;Choi, Kyung-Hee;Hong, Min-Ho;Oh, Seung-Han;Park, Young-Bum;Kim, Sung-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: The aim of this study was to determine whether biphasic calcium phosphate (BCP) bone substitute with two different concentrations of Escherichia coli-expressed recombinant human bone morphogenetic protein 2 (ErhBMP-2) enhances new bone formation in a standardized rabbit sinus model and to evaluate the concentration-dependent effect of ErhBMP-2. Methods: Standardized, 6-mm diameter defects were made bilaterally on the maxillary sinus of 20 male New Zealand white rabbits. Following removal of the circular bony windows and reflection of the sinus membrane, BCP bone substitute without coating (control group) was applied into one defect and BCP bone substitute coated with ErhBMP-2 (experimental group) was applied into the other defect for each rabbit. The experimental group was divided into 2 subgroups according to the concentration of ErhBMP-2 (0.05 and 0.5 mg/mL). The animals were allowed to heal for either 4 or 8 weeks and sections of the augmented sinus and surrounding bone were analyzed by microcomputed tomography and histologically. Results: Histologic analysis revealed signs of new bone formation in both the control and experimental groups with a statistically significant increase in bone formation in experimental group 1 (0.05 mg/mL ErhBMP-2 coating) after a 4-week healing period. However, no statistically significant difference was found between experimental group 1 and experimental group 2 (0.5 mg/mL ErhBMP-2 coating) in osteoinductive potential (P<0.05). Conclusions: ErhBMP-2 administered using a BCP matrix significantly enhanced osteoinductive potential in a standardized rabbit sinus model. A concentration-dependent response was not found in the present study.

Comparative analysis of carrier systems for delivering bone morphogenetic proteins

  • Jung, Im-Hee;Lim, Hyun-Chang;Lee, Eun-Ung;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.4
    • /
    • pp.136-144
    • /
    • 2015
  • Purpose: The objective of this study was to comparatively assess the bone regenerative capacity of absorbable collagen sponge (ACS), biphasic calcium phosphate block (BCP) and collagenated biphasic calcium phosphate (CBCP) loaded with a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). Methods: The CBCP was characterized by X-ray diffraction and scanning electron microscopy. In rabbit calvaria, four circular 8-mm-diameter defects were created and assigned to one of four groups: (1) blood-filled group (control), (2) rhBMP-2-soaked absorbable collagen sponge (0.05 mg/mL, 0.1 mL; CS group), (3) rhBMP-2-loaded BCP (BCP group), or (4) rhBMP-2-loaded CBCP (CBCP group). The animals were sacrificed either 2 weeks or 8 weeks postoperatively. Histological and histomorphometric analyses were performed. Results: The CBCP showed web-like collagen fibrils on and between particles. Greater dimensional stability was observed in the BCP and CBCP groups than in the control and the CS groups at 2 and 8 weeks. The new bone formation was significantly greater in the BCP and CBCP groups than in the control and CS groups at 2 weeks, but did not significantly differ among the four groups at 8 week. The CBCP group exhibited more new bone formation in the intergranular space and in the center of the defect compared to the BCP group at 2 weeks, but a similar histologic appearance was observed in both groups at 8 weeks. Conclusions: The dose of rhBMP-2 in the present study enhanced bone regeneration in the early healing period when loaded on BCP and CBCP in rabbit calvarial defects.

Establishment of a Stable Cell Line Expressing Human BMP2/7-PTD for Efficient Osteogenic Induction (효과적인 뼈 세포분화 유도를 위한 유전자 재조합 PTD 융합 인간 뼈 형성촉진인자2/7(BMP2/7-PTD)를 발현하는 세포주 개발)

  • Park, Seung-Won;Kang, Seok-Woo;Goo, Tae-Won;Kim, Seong-Ryul;Paik, Soon-Young
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.456-465
    • /
    • 2012
  • Heterodimeric recombinant human bone morphogenetic proteins (rhBMPs) are powerful tools for bone tissue engineering. However, BMPs have several important limitations in their application to bone regeneration. BMPs have a short half-life and must be used in high concentrations, which may be cost-inefficient. To overcome these problems, we established a stable cell line that expressed the fusion protein comprised of recombinant human BMP2/7 heterodimer protein and PTD (rhBMP2/7-PTD). This stable cell line enabled high process yields by continuously expressing rhBMP2/7-PTD products at high levels throughout cultivation. This synthesized BMP7 was fused to a BMP2 protein with four glycine residues (to allow free bond rotation of the domains) and PTD. To demonstrate that the rhBMP2/7-PTD protein that was secreted from an rhBMP2/7-PTD-expressing stable cell line exhibited biological activity consistent with its role as an osteogenic differentiation induction growth factor, we evaluated BMP-induced ALP activity. Our results suggest that this cell line may be a powerful and efficient tool for applications such as bone tissue regeneration.