• Title/Summary/Keyword: recombinant Saccharomyces cerevisiae

Search Result 186, Processing Time 0.025 seconds

Expression of Mouse $\alpha-Amylase$ Gene in Methylotrophic Yeast Pichia pastoris

  • Uehara Hiroyuki;Choi Du Bok;Park Enoch Y.;Okabe Mitsuyasu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • The expression of the mouse $\alpha-amylase$ gene in the methylotrophic yeast, P pastoris was investigated. The mouse $\alpha-amylase$ gene was inserted into the multi-cloning site of a Pichi a expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested with SalI or BglII, and was introduced into P. pastoris strain GSl15 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested with SaiII or BglII into the HIS4locus $(38\;of\;Mut^+\;clone)$ or into the AOX1 locus $(15\;of\;Mut^s\;clone)$. Southern blot was carried out in 11 transformants, which showed that the mouse $\alpha-amylase$ gene was integrated into the Pichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest $\alpha-amylase$ activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse $\alpha-amylase$ gene is compared with that in recombinant Saccharomyces cerevisiae harboring a plasmid encoding the same mouse $\alpha-amylase$ gene, the specific enzyme activity is eight fold higher than that of the recombinant S. cerevisiae.

  • PDF

Metabolic Engineering of Corynebacterium glutamicum for N-acetylglucosamine Production (N-아세틸글루코사민 생산을 위한 코리네박테리움 글루타미컴의 대사공학)

  • Kim, Jin-Yeon;Kim, Bu-yeon;Moon, Kyung-Ho;Lee, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.78-86
    • /
    • 2019
  • Recombinant Corynebacterium glutamicum producing N-acetylglucosamine (GlcNAc) was constructed by metabolic engineering. To construct a basal strain producing GlcNAc, the genes nagA, nagB, and nanE encoding N-acetylglucosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase, and N-acetylmannosamine-6-phosphate epimerase, respectively, were sequentially deleted from C. glutamicum ATCC 13032, yielding strain KG208. In addition, the genes glmS and gna1 encoding glucosamine-6-phosphate synthase and glucosamine-6-phosphate N-acetyltransferase, which originated from C. glutamicum and Saccharomyces cerevisiae, respectively, were expressed in several expression vectors. Among several combinations of glmS and gna1 expression, recombinant cells expressing glmS and gna1 under control of the ilvC promoter produced 1.77 g/l of GlcNAc and 0.63 g/l of glucosamine in flask cultures.

Immunofluorescence Localization of Schizosaccharomjyces pombe $cdc103^{+}$ Gene Product

  • Kim, Hyong-Bai
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.248-254
    • /
    • 1996
  • $cdc103^+$ gene in Schizosaccharomyces pombe which is similar to the CDC3 gene in Saccharomyces cerevisiae was cloned and sequenced. Comparison of the predicted amino acid sequences of $cdc103^+$ and CDC3 revealed that they share significant similarity (43% identity and 56% identity or similarity) to each other. The gene product of CDC3 in S. cerevisiae is known to be a highly ordered ring of filaments that lies just inside the cytoplasmic membrane in the region of the mother-bud neck. In order to characterize the gene product of $cdc103^+$ in Schizosaccharomyces pombe, fusion proteins were used to generate the polyclonal antibodies specific for the gene product (cdc103p). In immunofluorescence experiments, these antibodies decorate the region of the septum formation as a double ring structure late in the cell division cycle.

  • PDF

Molecular cloning and restriction analysis of aspartokinase gene (HOM3) in the yeast, saccharomyces cerevisiae (아스파테이트족 아미노산 대사에 관여하는 효모유전자(HOM3)의 클로닝 및 구조분석)

  • 최승일;이호주
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.32-36
    • /
    • 1988
  • The yeast gene HOM3 encodes aspartokinase, which catalyses the first step (aspartate to and from beta-aspartyl phosphate) of common pathway to threonine and methionine. The yeast HOM3 gene expression is known to be regulated by threonine and methionine specific control, and also by general control of amino acid biosynthesis. Isolation and characterization of the HOM3 gene are essential for the molecular genetic study on its regulation of expression. A recombinant plasmid pSC3 (15.5kb, vector YCp50) has been cloned into E. coli HB101 from yeast genomic library through their complementing activity of HOM3 mutation in a yeast recipient strain M34-24B. Organization of the plasmid was characterized by delineation of restriction cleavage sites in the insert fragment.

  • PDF

Production of Red-spotted Grouper Nervous Necrosis Virus (RGNNV) Capsid Protein Using Saccharomyces cerevisiae Surface Display (Saccharomyces cerevisiae 표면 발현을 이용한 붉바리 신경괴사 바이러스 외피단백질의 생산)

  • Park, Mirye;Suh, Sung-Suk;Hwang, Jinik;Kim, Donggiun;Park, Jongbum;Chung, Young-Jae;Lee, Taek-Kyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.995-1000
    • /
    • 2014
  • The studies of marine viruses in terms of viral isolation and detection have been limited due to the high mutation rate and genetic diversity of marine viruses. Of the modern methods currently used to detect marine viruses, serological methods based on enzyme-linked immunosorbent assay (ELISA) are the most common. They depend largely on the quality of the antibodies and on highly purified suitable antigens. Recently, a new experimental system for using viral capsid protein as an antigen has been developed using the yeast surface display (YSD) technique. In the present study, the capsid protein gene of the red-spotted grouper nervous necrosis virus (RGNNV) was expressed and purified via YSD and HA-tagging systems, respectively. Two regions of the RGNNV capsid protein gene, RGNNV1 and RGNNV2, were individually synthesized and subcloned into a yeast expression vector, pCTCON. The expressions of each RGNNV capsid protein in the Saccharomyces cerevisiae strain EBY100 were indirectly detected by flow cytometry with fluorescently labeled antibodies, while recognizing the C-terminal c-myc tags encoded by the display vector. The expressed RGNNV capsid proteins were isolated from the yeast surface through the cleavage of the disulfide bond between the Aga1 and Aga2 proteins after ${\beta}$-mercaptoethanol treatment, and they were directly detected by Western blot using anti-HA antibody. These results indicated that YSD and HA-tagging systems could be applicable to the expressions and purification of recombinant RGNNV capsid proteins.

Dna2 Helicase/endonuclease Interacts with a Novel Protein YHR122W Protein in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 Dna2 helicase/endonuclease와 YHR122W 단백질의 상호작용)

  • Lee, Hyun-Sun;Choi, Do-Hee;Kwon, Sung-Hoon;Kim, Na-Yeon;Lee, In-Hwan;Kim, Hyun-Jung;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Saccharomyces cerevisiae Dna2 helicase/endonuclease plays an essential role in removing DNA primers during Okazaki fragment processing in eukaryotic DNA replication. Genome-wide scale co-immunoprecipitation experiments predicted that Dna2 interacts with a novel protein YHR122W (1). In this study, we observed that overexpression of YHR122W gene suppressed the temperature-sensitive phenotype of $dna2\Delta405N$ mutation. To investigate direct interaction between these two proteins, a histidine-tagged recombinant YHR122W protein was expressed and purified from E. coli. Physical interaction between the purified YHR122W and Dna2 proteins was detected by enzyme-linked immunosorbent assays. Further more, the complex formation was most efficient at physiological salt concentration, 150 mM NaCl. The genetic and physical interactions between YHR122W and Dna2 shown in this study suggest that the biological functions of these two proteins may be closely related each other.

Effects of Polyethylene Glycol on Glucoamylase Production in Recombinant Yeast Culture (Polyethylene Glycol이 재조합 효모 배양에 의한 Glucoamylase 생산에 미치는 영향)

  • 차형준;유영제
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.311-316
    • /
    • 1996
  • The effects of polyethylene glycol (PEG) on glucoamylase production in recombinant Saccharomyces cerevisiae were studied. By PEG addition, the cell growth was not affected. However, the glucoamylase production was increased in all range of PEG molecular weights and concentrations. The optimal molecular weight of PEG was 6000 and the optimal concentration was 1g/L. Using these optimals, the extracellular glucoamylase activity was 23% higher in PEG-containing medium than that in medium without PEG.

  • PDF

재조합효모 배양에서 비이온성 계면활성제가 외래 Glucoamylase 생산 및 분비에 미치는 영향

  • 차형준;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.712-716
    • /
    • 1996
  • The effects of non-ionic surfactants (Triton X-100 and Tween 80) on cloned glucoamylase production and secretion in recombinant Saccharomyces cerevisiae culture were studied. Even though the extracellular glucoamylase activity was increased by addition of Tween 80 due to the increase of the cell mass, Tween 80 did not play a role in the increase of glucoamylase secretion. On the addition of Triton X-100 addition, the secretion efficiency was increased while the cell growth was inhibited. Triton X-100 was added to the culture broth after 24 hr of culture to minimize the inhibition of the cell growth, and consequently the glucoamylase activity in the culture broth was increased by 12%.

  • PDF

Improving 3'-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy

  • Wang, Tzi-Yuan;Tsai, Yi-Hsuan;Yu, I-Zen;Chang, Te-Sheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.498-502
    • /
    • 2016
  • 3'-Hydroxygenistein can be obtained from the biotransformation of genistein by the engineered Pichia pastoris X-33 strain, which harbors a fusion gene composed of CYP57B3 from Aspergillus oryzae and a cytochrome P450 oxidoreductase gene (sCPR) from Saccharomyces cerevisiae. P. pastoris X-33 mutants with higher 3'-hydroxygenistein production were selected using a periodic hydrogen peroxide-shocking strategy. One mutant (P2-D14-5) produced 23.0 mg/l of 3'-hydroxygenistein, representing 1.87-fold more than that produced by the recombinant X-33. When using a 5 L fermenter, the P2-D14-5 mutant produced 20.3 mg/l of 3'-hydroxygenistein, indicating a high potential for industrial-scale 3'-hydroxygenistein production.

Optimization of the Functional Expression of Coprinus cinereus Peroxidase in Pichia pastoris by Varying the Host and Promoter

  • Kim, Su-Jin;Lee, Jeong-Ah;Kim, Yong-Hwan;Song, Bong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.966-971
    • /
    • 2009
  • Peroxidase from Coprinus cinereus (CiP) has attracted attention for its high specific activity and broad substrate spectrum compared with other peroxidases. In this study, the functional expression of this peroxidase was successfully achieved in the methylotrophic yeast Pichia pastoris. The expression level of CiP was increased by varying the microbial hosts and the expression promoters. Since a signal sequence, such as the alpha mating factor of Saccharomyces cerevisiae, was placed preceding the cDNA of the CiP coding gene, expressed recombinant CiP (rCiP) was secreted into the culture broth. The Mut Pichia pastoris host showed a 3-fold higher peroxidase activity, as well as 2-fold higher growth rate, compared with the $Mut^s $ Pichia pastoris host. Furthermore, the AOX1 promoter facilitated a 5-fold higher expression of rCiP than did the GAP promoter.