• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.038 seconds

A Robust Watermarking Algorithm using Wavelet for Biometric Information (웨이블렛을 이용한 생체정보의 강인한 워터마킹 알고리즘)

  • Lee, Wook-Jae;Lee, Dae-Jong;Moon, Ki-Young;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.632-639
    • /
    • 2007
  • This paper presents a wavelet-based watermarking algorithm to securely hide biometric features such as face and fingerprint and effectively extract them with less distortion of the concealed data. To hide the biometric features, we proposed a determination method of insert location based on wavelet transform and adaptive weight method according to the image characteristics. The hidden features are effectively extracted by applying the inverse wavelet transform to the watermarked image. To show the effectiveness, we analyze the various performance such as PSNR and correlation of watermark features before and after applying watermarking. Also, we evaluate the effect of watermaking algorithm with respect to biometric system such as recognition rate. Recognition rate shows 98.67% for multimodal biometric systems consisted of face and fingerprint. From these, we confirm that the proposed method makes it possible to effectively hide and extract the biometric features without lowering recognition rate.

An Enhanced Counterpropagation Algorithm for Effective Pattern Recognition (효과적인 패턴 인식을 위한 개선된 Counterpropagation 알고리즘)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1682-1688
    • /
    • 2008
  • The Counterpropagation algorithm(CP) is a combination of Kohonen competition network as a hidden layer and the outstar structure of Grossberg as an output layer. CP has been used in many real applications for pattern matching, classification, data compression and statistical analysis since its learning speed is faster than other network models. However, due to the Kohonen layer's winner-takes-all strategy, it often causes instable learning and/or incorrect pattern classification when patterns are relatively diverse. Also, it is often criticized by the sensitivity of performance on the learning rate. In this paper, we propose an enhanced CP that has multiple Kohonen layers and dynamic controlling facility of learning rate using the frequency of winner neurons and the difference between input vector and the representative of winner neurons for stable learning and momentum learning for controlling weights of output links. A real world application experiment - pattern recognition from passport information - is designed for the performance evaluation of this enhanced CP and it shows that our proposed algorithm improves the conventional CP in learning and recognition performance.

A Study on Establishment Method of Smart Factory Dataset for Artificial Intelligence (인공지능형 스마트공장 데이터셋 구축 방법에 관한 연구)

  • Park, Youn-Soo;Lee, Sang-Deok;Choi, Jeong-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.203-208
    • /
    • 2021
  • At the manufacturing site, workers have been operating by inputting materials into the manufacturing process and leaving input records according to the work instructions, but product LOT tracking has been not possible due to many omissions. Recently, it is being carried out as a system to automatically input materials using RFID-Tag. In particular, the initial automatic recognition rate was good at 97 percent by automatically generating input information through RACK (TAG) ID and RACK input time analysis, but the automatic recognition rate continues to decrease due to multi-material RACK, TAG loss, and new product input issues. It is expected that it will contribute to increasing speed and yield (normal product ratio) in the overall production process by improving automatic recognition rate and real-time monitoring through the establishment of artificial intelligent smart factory datasets.

A study on the improvement of rain detectors error status analysis and observation algorithm (강우감지기 오류현황 분석 및 관측 알고리즘 개선 연구)

  • Hwang, SungEun;Kim, ByeongTaek;Lee, YoungTae;In, SoRa
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.627-631
    • /
    • 2024
  • We attempted to check the observation failure and error status of rain detectors for weather observation introduced and used in the 1980s and improve the collection and calculation algorithm of 1-minute rain detector data to enhance observation efficiency. Error status analysis revealed that among weather observation devices, rain detectors undergo manual quality control (MQC) the most frequently. It was determined that the precipitation recognition rate could be improved by refining the precipitation calculation algorithm. We examined and selected domestic and international rainfall detection algorithms and compared their precipitation recognition rates using random data. The algorithm that determined 'rainfall' when precipitation was measured at least once every 10 seconds showed the highest precipitation recognition rate. Although the algorithm tends to oversimulate precipitation, this can be improved through quality control of raw data. Based on the results of this study, it is believed that it can contribute to reducing the error rate and improving the accuracy of rain detectors.

Development of a Korean Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼 (ECHOS) 개발)

  • Kwon Oh-Wook;Kwon Sukbong;Jang Gyucheol;Yun Sungrack;Kim Yong-Rae;Jang Kwang-Dong;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.498-504
    • /
    • 2005
  • We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.

The Research of Shape Recognition Algorithm for Image Processing of Cucumber Harvest Robot (오이수확로봇의 영상처리를 위한 형상인식 알고리즘에 관한 연구)

  • Min, Byeong-Ro;Lim, Ki-Taek;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • Pattern recognition of a cucumber were conducted to detect directly the binary images by using thresholding method, which have the threshold level at the optimum intensity value. By restricting conditions of learning pattern, output patterns could be extracted from the same and similar input patterns by the algorithm. The algorithm of pattern recognition was developed to determine the position of the cucumber from a real image within working condition. The algorithm, designed and developed for this project, learned two, three or four learning pattern, and each learning pattern applied it to twenty sample patterns. The restored success rate of output pattern to sample pattern form two, three or four learning pattern was 65.0%, 45.0%, 12.5% respectively. The more number of learning pattern had, the more number of different out pattern detected when it was conversed. Detection of feature pattern of cucumber was processed by using auto scanning with real image of 30 by 30 pixel. The computing times required to execute the processing time of cucumber recognition took 0.5 to 1 second. Also, five real images tested, false pattern to the learning pattern is found that it has an elimination rate which is range from 96 to 98%. Some output patterns was recognized as a cucumber by the algorithm with the conditions. the rate of false recognition was range from 0.1 to 4.2%.

Adaptive Vehicle License Plate Recognition System Using Projected Plane Convolution and Decision Tree Classifier (투영면 컨벌루션과 결정트리를 이용한 상태 적응적 차량번호판 인식 시스템)

  • Lee Eung-Joo;Lee Su Hyun;Kim Sung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1496-1509
    • /
    • 2005
  • In this paper, an adaptive license plate recognition system which detects and recognizes license plate at real-time by using projected plane convolution and Decision Tree Classifier is proposed. And it was tested in circumstances which presence of complex background. Generally, in expressway tollgate or gateway of parking lots, it is very difficult to detect and segment license plate because of size, entry angle and noisy problem of vehicles due to CCD camera and road environment. In the proposed algorithm, we suggested to extract license plate candidate region after going through image acquisition process with inputted real-time image, and then to compensate license size as well as gradient of vehicle with change of vehicle entry position. The proposed algorithm can exactly detect license plate using accumulated edge, projected convolution and chain code labeling method. And it also segments letter of license plate using adaptive binary method. And then, it recognizes license plate letter by applying hybrid pattern vector method. Experimental results show that the proposed algorithm can recognize the front and rear direction license plate at real-time in the presence of complex background environments. Accordingly license plate detection rate displayed $98.8\%$ and $96.5\%$ successive rate respectively. And also, from the segmented letters, it shows $97.3\%$ and $96\%$ successive recognition rate respectively.

  • PDF

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System (음성인식을 위한 혼돈시스템 특성기반의 종단탐색 기법)

  • Zang, Xian;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.8-14
    • /
    • 2009
  • In the research field of speech recognition, pinpointing the endpoints of speech utterance even with the presence of background noise is of great importance. These noise present during recording introduce disturbances which complicates matters since what we just want is to get the stationary parameters corresponding to each speech section. One major cause of error in automatic recognition of isolated words is the inaccurate detection of the beginning and end boundaries of the test and reference templates, thus the necessity to find an effective method in removing the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two linear time-domain measurements: the short-time energy, and short-time zero-crossing rate. They perform well for clean speech but their precision is not guaranteed if there is noise present, since the high energy and zero-crossing rate of the noise is mistaken as a part of the speech uttered. This paper proposes a novel approach in finding an apparent threshold between noise and speech based on Lyapunov Exponents (LEs). This proposed method adopts the nonlinear features to analyze the chaos characteristics of the speech signal instead of depending on the unreliable factor-energy. The excellent performance of this approach compared with the conventional methods lies in the fact that it detects the endpoints as a nonlinearity of speech signal, which we believe is an important characteristic and has been neglected by the conventional methods. The proposed method extracts the features based only on the time-domain waveform of the speech signal illustrating its low complexity. Simulations done showed the effective performance of the Proposed method in a noisy environment with an average recognition rate of up 92.85% for unspecified person.

A Speech Translation System for Hotel Reservation (호텔예약을 위한 음성번역시스템)

  • 구명완;김재인;박상규;김우성;장두성;홍영국;장경애;김응인;강용범
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 1996
  • In this paper, we present a speech translation system for hotel reservation, KT_STS(Korea Telecom Speech Translation System). KT-STS is a speech-to-speech translation system which translates a spoken utterance in Korean into one in Japanese. The system has been designed around the task of hotel reservation(dialogues between a Korean customer and a hotel reservation de나 in Japan). It consists of a Korean speech recognition system, a Korean-to-Japanese machine translation system and a korean speech synthesis system. The Korean speech recognition system is an HMM(Hidden Markov model)-based speaker-independent, continuous speech recognizer which can recognize about 300 word vocabularies. Bigram language model is used as a forward language model and dependency grammar is used for a backward language model. For machine translation, we use dependency grammar and direct transfer method. And Korean speech synthesizer uses the demiphones as a synthesis unit and the method of periodic waveform analysis and reallocation. KT-STS runs in nearly real time on the SPARC20 workstation with one TMS320C30 DSP board. We have achieved the word recognition rate of 94. 68% and the sentence recognition rate of 82.42% after the speech recognition tests. On Korean-to-Japanese translation tests, we achieved translation success rate of 100%. We had an international joint experiment in which our system was connected with another system developed by KDD in Japan using the leased line.

  • PDF

Korean speech recognition using deep learning (딥러닝 모형을 사용한 한국어 음성인식)

  • Lee, Suji;Han, Seokjin;Park, Sewon;Lee, Kyeongwon;Lee, Jaeyong
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.213-227
    • /
    • 2019
  • In this paper, we propose an end-to-end deep learning model combining Bayesian neural network with Korean speech recognition. In the past, Korean speech recognition was a complicated task due to the excessive parameters of many intermediate steps and needs for Korean expertise knowledge. Fortunately, Korean speech recognition becomes manageable with the aid of recent breakthroughs in "End-to-end" model. The end-to-end model decodes mel-frequency cepstral coefficients directly as text without any intermediate processes. Especially, Connectionist Temporal Classification loss and Attention based model are a kind of the end-to-end. In addition, we combine Bayesian neural network to implement the end-to-end model and obtain Monte Carlo estimates. Finally, we carry out our experiments on the "WorimalSam" online dictionary dataset. We obtain 4.58% Word Error Rate showing improved results compared to Google and Naver API.