• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.031 seconds

The Modified ART1 Network using Multiresolution Mergence : Mixed Character Recognition (다중 해상도 병합을 이용한 수정된 적응 공명 이론 신경망: 혼합 문자 인식 적용)

  • Choi, Gyung-Hyun;Kim, Min-Je
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.215-222
    • /
    • 2007
  • As Information Technology growing, the character recognition application plays an important role in the ubiquitous environment. In this paper, we propose the Modified ART1 network using Multiresolution Mergence to the problems of the character recognition. The approach is based on the unsupervised neural network and multiresolution. In order to decrease noises and to increase the classification rate of the characters, we propose the multiresolution mergence strategy using both high resolution and low resolution information. Also, to maximize the effect of multiresolution mergence, we use a modified ART1 method with a different similarity measure. Our experimental results show that the classification rate of character is quite increased as well as the performance of the propose algorithm in conjunction with the similarity measure is improved comparing to the conventional ART1 algorithm in this application.

Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance (음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합)

  • Kao, Chao Yuan;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.670-677
    • /
    • 2019
  • As the presence of background noise in acoustic signal degrades the performance of speech or acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and MultiTask AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent MTAE (RMTAE) models for robust speech recognition.

Decision Tree for Likely phoneme model schema support (유사 음소 모델 스키마 지원을 위한 결정 트리)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.10
    • /
    • pp.367-372
    • /
    • 2013
  • In Speech recognition system, there is a problem with phoneme in the model training and it cause a stored mode regeneration process which come into being appear time and more costs. In this paper, we propose the methode of likely phoneme model schema using decision tree clustering. Proposed system has a robust and correct sound model which system apply the decision tree clustering methode form generate model, therefore this system reduce the regeneration process and provide a retrieve the phoneme unit in probability model. Also, this proposed system provide a additional likely phoneme model and configured robust correct sound model. System performance as a result of represent vocabulary dependence recognition rate of 98.3%, vocabulary independence recognition rate of 98.4%.

A Study on Face Recognition using Neural Networks and Characteristics Extraction based on Differential Image and DCT (차영상과 DCT 기반 특징 추출과 신경망을 이용한 얼굴 인식에 관한 연구)

  • 임춘환;고낙용;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1549-1557
    • /
    • 1999
  • In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.

  • PDF

Development of Feature Selection Method for Neural Network AE Signal Pattern Recognition and Its Application to Classification of Defects of Weld and Rotating Components (신경망 AE 신호 형상인식을 위한 특징값 선택법의 개발과 용접부 및 회전체 결함 분류에의 적용 연구)

  • Lee, Kang-Yong;Hwang, In-Bom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • The purpose of this paper is to develop a new feature selection method for AE signal classification. The neural network of back propagation algorithm is used. The proposed feature selection method uses the difference between feature coordinates in feature space. This method is compared with the existing methods such as Fisher's criterion, class mean scatter criterion and eigenvector analysis in terms of the recognition rate and the convergence speed, using the signals from the defects in welding zone of austenitic stainless steel and in the metal contact of the rotary compressor. The proposed feature selection methods such as 2-D and 3-D criteria showed better results in the recognition rate than the existing ones.

  • PDF

Lip-reading System based on Bayesian Classifier (베이지안 분류를 이용한 립 리딩 시스템)

  • Kim, Seong-Woo;Cha, Kyung-Ae;Park, Se-Hyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Pronunciation recognition systems that use only video information and ignore voice information can be applied to various customized services. In this paper, we develop a system that applies a Bayesian classifier to distinguish Korean vowels via lip shapes in images. We extract feature vectors from the lip shapes of facial images and apply them to the designed machine learning model. Our experiments show that the system's recognition rate is 94% for the pronunciation of 'A', and the system's average recognition rate is approximately 84%, which is higher than that of the CNN tested for comparison. Our results show that our Bayesian classification method with feature values from lip region landmarks is efficient on a small training set. Therefore, it can be used for application development on limited hardware such as mobile devices.

A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor (광학식 지문센서에서의 위조 지문 검출 방법)

  • Lee, Ji-Sun;Kim, Jae-Hwan;Chae, Jin-Seok;Lee, Byoung-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.492-503
    • /
    • 2008
  • With the recent development and increasing importance of personal identification systems, biometric technologies with less risk of loss or unauthorized use are being popularized rapidly. In particular, because of their high identification rate and convenience, fingerprint identification systems are being used much more commonly than other biometric systems such as iris recognition, face recognition and vein pattern recognition. However, a fingerprint identification system has the problem that artificially forged finger-prints can be used as input data. Thus, in order to solve this problem, the present study proposed a method for detecting forged fingerprints by measuring the degree of attenuation when the light from an optical fingerprint sensor passes through the finger and analyzing changes in the transmission of light over stages at fixed intervals. In order to prove improvement in the performance of the proposed system, we conducted an experiment that compared the system with an existing multi-sensor recognition system that measures also the temperature of fingerprint. According to the results of the experiment, the proposed system improved the forged fingerprint detection rate by around 32.6% and this suggests the possibility of solving the security problem in fingerprint identification systems.

  • PDF

Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering (장르별 협업필터링을 이용한 영화 추천 시스템의 성능 향상)

  • Lee, Jae-Sik;Park, Seog-Du
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.65-78
    • /
    • 2007
  • This paper proposes a new method of weighted template matching for machine-printed numeral recognition. The proposed weighted template matching, which emphasizes the feature of a pattern using adaptive Hamming distance on local feature areas, improves the recognition rate while template matching processes an input image as one global feature. Template matching is vulnerable to random noises that generate ragged outlines of a pattern when it is binarized. This paper offers a method of chain code trimming in order to remove ragged outlines. The method corrects specific chain codes within the chain codes of the inner and the outer contour of a pattern. The experiment compares confusion matrices of both the template matching and the proposed weighted template matching with chain code trimming. The result shows that the proposed method improves fairly the recognition rate of the machine-printed numerals.

  • PDF

Fingerprint Recognition using Linking Information of Minutiae (특징점의 연결정보를 이용한 지문인식)

  • Cha, Heong-Hee;Jang, Seok-Woo;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.815-822
    • /
    • 2003
  • Fingerprint image enhancement and minutiae matching are two key steps in an automatic fingerprint identification system. In this paper, we propose a fingerprint recognition technique by using minutiae linking information. Recognition process have three steps ; preprocessing, minutiae extraction, matching step based on minutiae pairing. After extracting minutiae of a fingerprint from its thinned image for accuracy, we introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection with low cost in comparison stage of two fingerprints. This algorithm is invariable to translation and rotation of fingerprint. The matching algorithm was tested on 500 images from the semiconductor chip style scanner, experimental result revealed the false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

Structuring of Pulmonary Function Test Paper Using Deep Learning

  • Jo, Sang-Hyun;Kim, Dae-Hoon;Kim, Yoon;Kwon, Sung-Ok;Kim, Woo-Jin;Lee, Sang-Ah
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.61-67
    • /
    • 2021
  • In this paper, we propose a method of extracting and recognizing related information for research from images of the unstructured pulmonary function test papers using character detection and recognition techniques. Also, we develop a post-processing method to reduce the character recognition error rate. The proposed structuring method uses a character detection model for the pulmonary function test paper images to detect all characters in the test paper and passes the detected character image through the character recognition model to obtain a string. The obtained string is reviewed for validity using string matching and structuring is completed. We confirm that our proposed structuring system is a more efficient and stable method than the structuring method through manual work of professionals because our system's error rate is within about 1% and the processing speed per pulmonary function test paper is within 2 seconds.