• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

Three-dimensional Face Recognition based on Feature Points Compression and Expansion

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Park, Sang-min;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk;Son, Byounghee
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Many researchers have attempted to recognize three-dimensional faces using feature points extracted from two-dimensional facial photographs. However, due to the limit of flat photographs, it is very difficult to recognize faces rotated more than 15 degrees from original feature points extracted from the photographs. As such, it is difficult to create an algorithm to recognize faces in multiple angles. In this paper, it is proposed a new algorithm to recognize three-dimensional face recognition based on feature points extracted from a flat photograph. This method divides into six feature point vector zones on the face. Then, the vector value is compressed and expanded according to the rotation angle of the face to recognize the feature points of the face in a three-dimensional form. For this purpose, the average of the compressibility and the expansion rate of the face data of 100 persons by angle and face zone were obtained, and the face angle was estimated by calculating the distance between the middle of the forehead and the tail of the eye. As a result, very improved recognition performance was obtained at 30 degrees of rotated face angle.

A study on the dental technology student's recognition for non-face-to-face classes (비대면 수업에 대한 치기공과 학습자 인식에 관한 연구)

  • Choi, Ju young;Jung, Hyo Kyung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.402-408
    • /
    • 2020
  • Purpose: To understand the students' level of recognition of online classes in the Department of Dental Technology and to provide the basic data for designing online classes based on the dental technology course. Methods: A survey was conducted among the students of the dental technology department. The collected data was analyzed with the SPSS ver. 25.0 program. To ensure a reliable verification, the α=0.05 significance level was used. The t-test and analysis of variance were also performed. Results: The students' level of recognition of online classes in the Department of Dental Technology is shown in the rate of recognition for video-based classes for both the theory and experiments. Students displayed high positivity with the video-based learning as it is repeated learning that is not affected by the limitations of time. In addition, video-based learning is highly beneficial in terms of convenience, satisfaction, and achievement for learning. Conclusion: Based on the results, video-based learning is a highly positive learning type for students. It was also recommended that the Department of Dental Technology should offer a post-COVID-19 online class to include the blended methods of a face-to-face class and video-based learning.

Micro-Expression Recognition Base on Optical Flow Features and Improved MobileNetV2

  • Xu, Wei;Zheng, Hao;Yang, Zhongxue;Yang, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1981-1995
    • /
    • 2021
  • When a person tries to conceal emotions, real emotions will manifest themselves in the form of micro-expressions. Research on facial micro-expression recognition is still extremely challenging in the field of pattern recognition. This is because it is difficult to implement the best feature extraction method to cope with micro-expressions with small changes and short duration. Most methods are based on hand-crafted features to extract subtle facial movements. In this study, we introduce a method that incorporates optical flow and deep learning. First, we take out the onset frame and the apex frame from each video sequence. Then, the motion features between these two frames are extracted using the optical flow method. Finally, the features are inputted into an improved MobileNetV2 model, where SVM is applied to classify expressions. In order to evaluate the effectiveness of the method, we conduct experiments on the public spontaneous micro-expression database CASME II. Under the condition of applying the leave-one-subject-out cross-validation method, the recognition accuracy rate reaches 53.01%, and the F-score reaches 0.5231. The results show that the proposed method can significantly improve the micro-expression recognition performance.

Design of an efficient learning-based face detection system (학습기반 효율적인 얼굴 검출 시스템 설계)

  • Kim Hyunsik;Kim Wantae;Park Byungjoon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.213-220
    • /
    • 2023
  • Face recognition is a very important process in video monitoring and is a type of biometric technology. It is mainly used for identification and security purposes, such as ID cards, licenses, and passports. The recognition process has many variables and is complex, so development has been slow. In this paper, we proposed a face recognition method using CNN, which has been re-examined due to the recent development of computers and algorithms, and compared with the feature comparison method, which is an existing face recognition algorithm, to verify performance. The proposed face search method is divided into a face region extraction step and a learning step. For learning, face images were standardized to 50×50 pixels, and learning was conducted while minimizing unnecessary nodes. In this paper, convolution and polling-based techniques, which are one of the deep learning technologies, were used for learning, and 1,000 face images were randomly selected from among 7,000 images of Caltech, and as a result of inspection, the final recognition rate was 98%.

A Framework for Facial Expression Recognition Combining Contextual Information and Attention Mechanism

  • Jianzeng Chen;Ningning Chen
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.535-549
    • /
    • 2024
  • Facial expressions (FEs) serve as fundamental components for human emotion assessment and human-computer interaction. Traditional convolutional neural networks tend to overlook valuable information during the FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deep learning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanism for precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone network and introduced an improved group convolutional channel attention (GCCA) module in each block to emphasize the crucial expression features. A partial decoder was added at the end of the backbone network to facilitate the fusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the model to refine details layer-by-layer while introducing contextual information and extracting richer expression features. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss, creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectiveness of our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and 98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability.

Recognition of processed foods may affect the use of food labelings in middle school students (중학생과 학부모의 가공식품에 대한 인지도가 식품표시의 이용에 미치는 영향)

  • Lee, Jeong-Won;Kim, Dong-Sun
    • Journal of the Korean Dietetic Association
    • /
    • v.9 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In order to investigate the recognition of processed foods, use of food labeling, and their influencing factors in adolescents, 277(male 125, female 152) middle school students were conveniently selected from Cheonan city, and were surveyed by self-recording questionnaire on June, 2000. Subjects' parents were also surveyed using the similar questionnaire. Food labels of all 222 processed foods collected from stores around schools, were well labeled in most items, but food additives(35.6%) and the origin of major ingredient(27.0) were not well indicated. The recognition score of processed foods was 55.0 out of a full score 100 in students and 68.5 in parents. The scores of students were positively correlated with those of their parents and with father's education years, while negatively correlated with snacking expenses. The rate of reading food labels was significantly different between students(51.3%) and their parents(89.9%). The main purposes of reading food labels, in case of students, were to check expiry date(93.7%), price(70.4%), and how to eat(46.5%) in order. While in parents, those were to check expiry date(95.6%), additives(59.0%), and manufacturer(45.8%). Similarly, the most three important items in food labels were expiry date, price, and quantity to the students, but to the parents they were expiry date, manufacturer, and ingredient. The most significant reason not to confirm food labels was because of small size and complication of labels. The students who did not read food labels had more snacking money and more frequent snacking, and showed lower recognition score of processed food, compared with the students who read food labels. In conclusion, the students did not well recognise processed foods and only a half of them read food labels at purchasing. The recognition score of processed foods, snacking moneys, and snacking frequency may be influencing factors on the reading of food labels in students. The high recognition of processed food of parents may positively affect the students' recognition, but did not affect directly the reading food labels.

  • PDF

Vocabulary Recognition Model using a convergence of Likelihood Principla Bayesian methode and Bhattacharyya Distance Measurement based on Vector Model (벡터모델 기반 바타챠랴 거리 측정 기법과 우도 원리 베이시안을 융합한 어휘 인식 모델)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.165-170
    • /
    • 2015
  • The Vocabulary Recognition System made by recognizing the standard vocabulary is seen as a decline of recognition when out of the standard or similar words. The vector values of the existing system to the model created by configuring the database was used in the recognition vocabulary. The model to be formed during the search for the recognition vocabulary is recognizable because there is a disadvantage not configured with a database. In this paper, it induced to recognize the vector model is formed by the search and configuration using a Bayesian model recognizes the Bhattacharyya distance measurement based on the vector model, by applying the Wiener filter improves the recognition rate. The result of Convergence of two method's are improved reliability experiments for distance measurement. Using a proposed measurement are compared to the conventional method exhibited a performance of 98.2%.

Character Segmentation and Recognition Algorithm for Various Text Region Images (다양한 문자열영상의 개별문자분리 및 인식 알고리즘)

  • Koo, Keun-Hwi;Choi, Sung-Hoo;Yun, Jong-Pil;Choi, Jong-Hyun;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.806-816
    • /
    • 2009
  • Character recognition system consists of four step; text localization, text segmentation, character segmentation, and recognition. The character segmentation is very important and difficult because of noise, illumination, and so on. For high recognition rates of the system, it is necessary to take good performance of character segmentation algorithm. Many algorithms for character segmentation have been developed up to now, and many people have been recently making researches in segmentation of touching or overlapping character. Most of algorithms cannot apply to the text regions of management number marked on the slab in steel image, because the text regions are irregular such as touching character by strong illumination and by trouble of nozzle in marking machine, and loss of character. It is difficult to gain high success rate in various cases. This paper describes a new algorithm of character segmentation to recognize slab management number marked on the slab in the steel image. It is very important that pre-processing step is to convert gray image to binary image without loss of character and touching character. In this binary image, non-touching characters are simply separated by using vertical projection profile. For separating touching characters, after we use combined profile to find candidate points of boundary, decide real character boundary by using method based on recognition. In recognition step, we remove noise of character images, then recognize respective character images. In this paper, the proposed algorithm is effective for character segmentation and recognition of various text regions on the slab in steel image.

Robust Face Recognition System using AAM and Gabor Feature Vectors (AAM과 가버 특징 벡터를 이용한 강인한 얼굴 인식 시스템)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Jeon, Seoung-Seon;Kim, Jae-Min;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, we propose a face recognition system using AAM and Gabor feature vectors. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization of facial feature points employed in EBGM is based on Gator jet similarity and is sensitive to initial points. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we propose a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based localization method with initial points set by the facial feature points estimated from AAM, and propose a face recognition system based on the proposed localization method. It is verified through experiments that the proposed face recognition system using the combined localization performs better than the conventional face recognition system using the Gabor similarity-based localization only like EBGM.

On Pattern Kernel with Multi-Resolution Architecture for a Lip Print Recognition (구순문 인식을 위한 복수 해상도 시스템의 패턴 커널에 관한 연구)

  • 김진옥;황대준;백경석;정진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2067-2073
    • /
    • 2001
  • Biometric systems are forms of technology that use unique human physical characteristics to automatically identify a person. They have sensors to pick up some physical characteristics, convert them into digital patterns, and compare them with patterns stored for individual identification. However, lip-print recognition has been less developed than recognition of other human physical attributes such as the fingerprint, voice patterns, retinal at blood vessel patterns, or the face. The lip print recognition by a CCD camera has the merit of being linked with other recognition systems such as the retinal/iris eye and the face. A new method using multi-resolution architecture is proposed to recognize a lip print from the pattern kernels. A set of pattern kernels is a function of some local lip print masks. This function converts the information from a lip print into digital data. Recognition in the multi-resolution system is more reliable than recognition in the single-resolution system. The multi-resolution architecture allows us to reduce the false recognition rate from 15% to 4.7%. This paper shows that a lip print is sufficiently used by the measurements of biometric systems.

  • PDF