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Abstract 

Facial expressions (FEs) serve as fundamental components for human emotion assessment and human–

computer interaction. Traditional convolutional neural networks tend to overlook valuable information during 

the FE feature extraction, resulting in suboptimal recognition rates. To address this problem, we propose a deep 

learning framework that incorporates hierarchical feature fusion, contextual data, and an attention mechanism 

for precise FE recognition. In our approach, we leveraged an enhanced VGGNet16 as the backbone network 

and introduced an improved group convolutional channel attention (GCCA) module in each block to emphasize 

the crucial expression features. A partial decoder was added at the end of the backbone network to facilitate the 

fusion of multilevel features for a comprehensive feature map. A reverse attention mechanism guides the model 

to refine details layer-by-layer while introducing contextual information and extracting richer expression 

features. To enhance feature distinguishability, we employed islanding loss in combination with softmax loss, 

creating a joint loss function. Using two open datasets, our experimental results demonstrated the effectiveness 

of our framework. Our framework achieved an average accuracy rate of 74.08% on the FER2013 dataset and 

98.66% on the CK+ dataset, outperforming advanced methods in both recognition accuracy and stability. 
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1. Introduction 

Facial expressions (FEs) provide a nonverbal channel for conveying genuine emotions and intentions, 

serving as a vital means of exchanging emotional information and facilitating interpersonal dynamics [1]. 

In the field of computer vision, the analysis of human FEs enables the comprehension of human emotions 

and their integration into a wide array of human–computer interaction systems, spanning service robots, 

fatigue detection for drivers, and medical services [2]. In social dynamics, complex facial movements 

and expressions have evolved to convey inner emotions. However, academic circles predominantly delve 

into the six fundamental emotional categories, as proposed by psychologists Ekman and Friesen, which 

encompass happiness, anger, sadness, surprise, disgust, and fear [3]. According to [4], in day-to-day 

human interaction, as much as 55% of the conveyed information is transmitted via FEs. This highlights 
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the considerable research value and significance of facial expression recognition (FER). 

Traditional FER methods predominantly rely on shallow learning and manually engineered features. 

These techniques include principal component analysis (PCA) [5], local binary patterns (LBP) [6], Gabor 

transformation [7], geometric feature-based extraction [8], and hybrid feature extraction [9]. Nonetheless, 

these FER approaches are constrained by their reliance on prior knowledge, limited generalization 

capabilities, and inability to meet the precision and efficiency demands of real-world applications. 

With rapid advancements in deep learning (DL) technology, studies on FER using deep neural network 

models have made significant progress. Convolutional neural networks (CNNs) have gained popularity 

for image recognition and classification [10]. Researchers have undertaken multifaceted efforts to 

enhance the accuracy of CNNs for expression recognition. Mollahosseini et al. [11] constructed a 7-layer 

CNN, initially pretrained on an extensive face dataset, followed by fine tuning with a FE dataset. Their 

innovative use of the inception layer architecture across multiple datasets for FER yielded superior results 

compared with traditional methods. However, the limited data in the FE datasets led to overfitting. 

Ding et al. [12] introduced the FaceNet2ExpNet approach, employing deep features from the facial 

network to supervise training of the convolutional layer. Subsequently, they added a randomly initialized 

fully connected layer and initiated the training from scratch. Ng et al. [13] adapted a pretrained CNN 

model from the ImageNet dataset, adjusted it using the FER2013 dataset, and fine-tuned the modified 

model using the EmotiW dataset. They assessed the performance of the model for FER in real-world 

scenarios; however, the recognition accuracy was not optimal. Verma et al. [14] employed diverse 

subnetworks to extract rich features and efficiently combined them using an appropriate ensemble 

technique. This approach comprehensively considered changes in facial features due to significant facial 

movements and performed well on the CK+ dataset. Liu et al. [15] adopted a strategy involving three 

parallel multichannel CNNs to learn the global and local features from distinct facial regions. They 

implemented a joint embedding feature learning strategy to explore identity-invariant and pose-invariant 

expression representations based on fused regions in the embedding space. However, this method does 

not achieve precise human facial recognition accuracy in unconstrained environments. 

In recent years, researchers have introduced attention mechanism into CNN [16]. By learning and 

adaptively assigning different weight coefficients to different regions on the feature maps (FMs), the 

network is capable of obtaining more expressive features, which enhances the efficiency and accuracy of 

FER. Hu et al. [17] presented a SENet network to obtain the channel dependencies of the features, which 

significantly improved the performance of the CNN model. Woo et al. [18] introduced the convolutional-

block-attention-module (CBAM) concept, in which feature attentional operations were simultaneously 

performed in the spatial and channel dimensions, and good recognition results were obtained. 

In recent years, the rapid development of image dehazing technology has a profound impact on various 

computer vision domains, including FER [19]. In FER, image quality significantly affects the algorithm 

performance. In particular, in practical applications such as security monitoring, facial recognition, and 

emotion analysis, image quality can be compromised by atmospheric conditions and adverse weather, 

making it challenging to accurately capture FEs [20]. 

Recent studies have emphasized the importance of image dehazing technology in FER. By applying 

state-of-the-art image dehazing algorithms, researchers can enhance the image clarity and visibility, 

improving the accuracy of expression recognition algorithms. This is particularly crucial for capturing 

expressions in low-light conditions or for conducting real-time facial analyses in outdoor environments. 

Furthermore, image dehazing technology can assist in reducing noise and enhancing image quality, 



Jianzeng Chen and Ningning Chen 

 

J Inf Process Syst, Vol.20, No.4, pp.535~549, August 2024 | 537 

thereby facilitating the precise capture of facial features and emotions [21]. Consequently, the application 

of image dehazing technology in FER has become a topic of significant interest, offering new 

opportunities to enhance the practicality and performance of FER systems. This trend will further drive 

interdisciplinary research on image dehazing and FER, aiming for a clearer and more accurate FER. 

This study delves into the integration of contextual information and multiple attention mechanisms 

within the VGGNet16 network. In our proposed FER framework, the enhanced VGGNet serves as a 

backbone network for feature extraction. We introduce a multiscaled feature merging strategy to combine 

FMs from different levels, thereby enhancing the utilization of lower-level features and achieving precise 

recognition performance. The main contributions of our study are as follows: 

 We employed an improved VGGNet16 as the backbone network for feature extraction. In each 

backbone block, we implemented an enhanced group convolutional channel attention (GCCA) 

module to steer the network's focus toward critical areas while suppressing irrelevant ones. 

 Five backbone blocks were used to extract multiple features of varying sizes in different layers. The 

lower-level blocks capture high-resolution edge features with limited semantics. A partial decoder 

(PD) was introduced at the end of the backbone to aggregate all of the high-level block features and 

generate a global map. This map guides progressive learning through reverse attention (RA) modules, 

enabling the network to learn more nuanced expression details. 

The remainder of this paper is organized as follows. Section 2 describes the proposed FER framework. 

Section 3 presents the performance evaluation and comparison of the results obtained for two public 

datasets. Finally, Section 4 provides a comprehensive summary of the study, highlighting the limitations 

of the proposed approach and outlining future research directions. 

 

 

2. Proposed FER Framework 

2.1 Network Structure 

Fig. 1 illustrates the overall framework of this study. The FE images first undergo processing in the 

initial two low-level blocks to extract high-resolution, low-level features with limited semantics. To 

bolster the extraction of boundary features, these features pass through a convolutional layer with a single 

kernel, thereby enhancing the edge mapping accuracy. The low-level feature �� is subsequently directed 

to the last three high-level blocks within the backbone network. To extract the partial features, a PD 

module is incorporated at the end of the backbone. The PD module consolidates all of the high-level 

features from these blocks, producing a comprehensive global map labeled as ��. Furthermore, an RA 

module is placed after each high-level block. Each high-level block generates features at different scales 

and sequentially combines them with features from various blocks originating from the preliminary 

global map. These outputs serve as inputs to the RA module, enabling the extraction of finer expression 

details. Finally, multiple features are fused to generate the ultimate FER outcome. 

 

2.2 Backbone Network 

In our proposed FER framework, we opted for VGGNet16 as the backbone for feature extraction with 

certain enhancements to enhance the stability of the FER tasks. A visual representation of the modified 

backbone is shown in Fig. 2. To streamline the model and safeguard against the loss of fine-grained FE 
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details in high-level features, we omitted the final pooling layer and the fully connected layer in the 

VGGNet16. In addition, we integrated a GCCA module into each block of the backbone network. This 

module encourages the network to concentrate on target areas, thereby enhancing the overall model 

performance. 

 

 
Fig. 1. Structure of the proposed framework. The improved VGGNet16 was used as the backbone 

network, and feature fusion was employed to extract multiple features (shallow features from low-level 

blocks in the backbone network and the aggregation of deep internal details from high-level blocks using 

a PD module). Through the RA mechanism, the currently predicted area was erased from the high-level 

side to the output features. This guides the entire network to progressively explore the supplementary fine 

details from top to bottom. 

 

 
Fig. 2. Structure of the backbone network. To steer the network's focus toward target regions, CBAM 

was introduced in every block of the backbone network. To empower the network with the capability to 

learn multiscale features, lateral output components were added after the last four blocks of the backbone 

network to provide feature information of varying scales. 

 

To equip the network with multiscale feature learning capabilities, we introduced a lateral output 

component after the last four blocks of the backbone network, offering features of varying scales. As 

depicted in Fig. 2, the lateral output branch from the low-level block 2 was employed to extract low-level 

features with limited semantics. Simultaneously, the lateral output branches of high-level blocks 3, 4, and 

5 were dedicated to extract high-level features with strong semantic content. The ultimate result was 

derived by fusing the high-level and low-level features. 
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2.3 Backbone Network 

Within a CNN, the distinct feature channels exhibit varying responses. If each channel is assigned an 

equal weight, the significance of the individual channels in feature extraction remains inadequately 

addressed. To maximize the utility of each feature channel, we introduced a channel attention module 

(i.e., the GCCA module) based on the group convolution concept [22]. The structure of this module is 

illustrated in Fig. 3. 

 

 
Fig. 3. GCCA module. While the SENet exclusively employs maximum pooling, the proposed module 

extends it by incorporating average pooling and random pooling. This triad of pooling methods 

collectively yields a more comprehensive extraction of global features from various channels. Following 

these three distinct pooling processes, the FM was transformed into three channel descriptors, aligning 

with the dimensionality of the input FM. 

 

Let input FM be � ∈ ��×�×� , which is compressed into three channel descriptors, ���	� , �
��
� , and ���
� , with dimensions of 1×1×C after the aforementioned pooling processes. To further learn the 

correlation between the channels, a group convolution operation was introduced. First, the three channel 

descriptors were grouped according to different channels, and the global information of the same channel 

was spliced together to form a new feature vector. Each new feature vector contained three types of global 

information. Following this, the feature vectors were convoluted by convolutional layers containing 1×1 

convolution kernels such that the three types of global information were adaptively fused together, 

resulting in a channel descriptor with dimensions of 1×1×C. The channel descriptor was subsequently 

sent to two convolutional layers containing a 1×1 convolution kernel for feature learning. The number of 

channels in the previous convolutional layer was C/16. The number of channels in the following 

convolutional layer was C, to learn the weight coefficients of different channels. 

 �(�) = �(��(�(�
(�(	(���	;�
��;���
)))))). (1) 

 

here, � and � are the ReLU and sigmoid functions, 	 is the group convolution operation, and �
 and �� 

are the convolution parameters of the first and second convolutional layers, respectively. Favg, Fmax, and 

Frdm represent average pooling, max pooling, and random pooling operations, respectively. 

The sigmoid function limits the value of each element within the interval [0,1]. If it is directly 
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multiplied by the input FM, the output response of the FM is weakened. Hence, the input FM was 

weighted using the attention weight coefficients through a point multiplication operation so that the 

effective features were strengthened and redundant features were restrained. To prevent the weakening 

of the output response, the input FM was added to the weighted attention FM to strengthen the stability 

of the model. The ultimate output of the GCCA module is expressed as: 

 �� = 
�(�) ⊗ � + � (2) 
 

where �� is the output FM by the GCCA module and 
���� is the attention weight coefficient. 

 

2.4 Partial Decoder 

In the CNN model, high-level features convey semantics, whereas low-level features depict spatial 

details that are beneficial for refining object boundaries. In contrast to high-level features, low-level 

features have a relatively smaller impact on the overall performance, and due to their substantial spatial 

resolution, can result in substantial computational overhead. Hence, a PD module [23] was introduced at 

the end of the backbone, as illustrated in Fig. 4. 

 

 
Fig. 4. Structure of the PD module. The PD only incorporates high-level features, discarding the larger 

resolution features from the low-level layers, which facilitates rapid and precise extraction of target region 

features. 

 

The PD module exclusively integrates high-level features while discarding lower-resolution shallow 

features, ensuring swift and accurate extraction of FE features. The process is described as follows. 

Initially, three sets of high-confidence, high-level features {�� , 
 = 3,4,5} are extracted from the high-

level blocks of the backbone network. Subsequently, these high-level features from the three sets are 

amalgamated using the partial decoder ��(∙). This fusion of features from different levels encourages 

information from distinct layers to complement one another, culminating in the creation of a preliminary 

global map �� = ��(��,��,��). This map serves as a guide for the subsequent progressive learning based 

on the reverse attention strategy. 

 

2.5 Reverse Attention Module 

To meticulously capture detailed expression information from crucial regions, we introduced an RA 

module within high-level blocks to progressively expand the target area. Commencing from the initial 

global map generated by the PD module, multiple features of distinct sizes extracted by blocks 5, 4, and 

3 serve as inputs and are transmitted to the RA module. 
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The RA module methodically erases the presently predicted region from the high-level lateral output 

features, sequentially unveiling the missing details and nuanced features of the essential expression 

regions that require supplementation from top to bottom. In this approach, the present prediction result is 

obtained by upscaling information from the deeper network layers. This incremental erasure concept [24] 

refines the initial rough prediction into a comprehensive and precise prediction outcome. 

The reverse attention feature output results from the element-wise multiplication of the high-level 

output features {�� , 
 = 3,4,5}. The reverse attention weight �� is expressed mathematically as: 

 �� = ���� ∙ ���, (3) 
 

where �(∙) denotes the dot multiplication operation. The RA weight ��  can be obtained by simply 

subtracting the upsampling prediction of the (
 + 1)-th lateral output from 1, as follows: 

 �� = 1 − sigmoid������
��, (4) 
 

where �(∙) denotes the upsampling operation. 

 

2.6 Reverse Attention Module 

The loss function primarily quantifies the disparities between the predicted and actual values, and the 

network training aims to minimize these loss functions. Using the softmax loss function, the neural 

network output values were mapped within the (0,1) interval, providing probabilities for various 

classifications. These probabilities were then compared to achieve multi-classification. Although the 

softmax loss function effectively optimizes interclass spacing, it can misjudge samples of the same FE 

when there are substantial discrepancies. 

To address this issue, we introduced an islanding loss function [25]. By implementing these two 

functions, the objectives of increasing interclass distances and decreasing intraclass distances were 

realized. The islanding loss function is an enhancement built upon the center loss. Initially, a cosine 

distance is computed and 1 is added to extend the range to (0,2), thereby enlarging the distance between 

different classes. The islanding loss function is mathematically expressed as: 

 �� = �� + �
������ (5) 
 

where �� represents the center loss function (which is used to optimize the intraclass distance), ������ 

represents the cosine distance of the cluster center, and �
 is a hyperparameter indicating the weight ratio 

in the islanding loss function. ������ can be calculated from the following equation: 

 

������ = �
��∈�

�  

��∈�

� �� ⋅ ��∥∥��∥∥�∥∥��∥∥� + 1�, (6) 

 

where N represents the set of sample labels, �� and �� represent the cluster centers of the k-th and j-th 

classes of expressions, respectively, and ∥∥��∥∥�  and ∥∥��∥∥�  represent the Euclidean distances from the 

cluster center to the origin of the coordinates. 

In our proposed framework, the training of the network was optimized by considering the softmax loss 

and islanding loss functions. Therefore, features of the same class were close to one another, and the 
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distances between dissimilar classes of facial features were increased to achieve better recognition results. 

The joint loss function can be determined using the following equation: 

 

� � �� � ��� , (7) 
 

where � denotes the weight ratio of the islanding loss in the joint loss function. Based on the model 

performance results with different parameter values in the experiments, � and �� were fixed at 0.005 and 

7, respectively 

 

 

3. Experiment and Analysis 

3.1 Experimental Dataset and Data Augmentation 

In this experiment, two widely recognized public FER datasets were employed: the FER2013 and CK+ 

expression datasets. 

The CK+ expression dataset [26] encompasses 593 sequences of expression images, spanning from 

natural to peak expressions, featuring 123 individuals. Of these sequences, 327 have additional expression 

tags. The dataset encompasses eight fundamental FE classes: anger, contempt, happiness, sadness, surprise, 

disgust, fear, and neutral. All images portray clear and positive FEs, with annotations meticulously 

validated by psychologists. For fairness in performance evaluation and comparison, the dataset omits 

contempt expressions due to their notably small sample size. 

The FER2013 dataset [27] comprises 35,887 facial images accompanied by expression labels. This 

dataset encapsulates seven expressions: anger, disgust, fear, happiness, sadness, surprise, and neutral. 

The data collection was conducted in an uncontrolled environment, making it challenging to obtain 

precise recognition results. 

 

 
Fig. 5. Data augmentation. The multi-task cascaded convolutional networks (MTC-NN) model was used 

for facial detection and cropping to obtain nearly background-free facial images. Subsequently, the 

acquired facial images were scaled and normalized using bilinear interpolation, resulting in saved images 

with dimensions of 224 × 224 pixels. Subsequently, data augmentation was applied to the used samples, 

expanding the sample quantity. 
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Data augmentation was performed on the image samples to enhance the resilience of the model to 

interference, resulting in an expanded sample pool. Each image underwent flipping and rotation, with a 

rotation angle of ±10° at 5° intervals. Hence, the number of image samples increased to 15 times the 

number of image samples of the original dataset. The efficacy of data augmentation is depicted in Fig. 5. 

 

3.2 Performance Evaluation Metrics 

Two performance indicators (average accuracy ��� and stability ���) were used [28] in this experiment. 

Each method was tested N (N = 10) times, and the final average accuracy was determined as follows: 

 

��� =
∑�

��
 ���� , (8) 

 

where ���� denotes the recognition accuracy of the i-th experiment. Owing to the random initialization 

of network parameters and random batching of training samples, there is a certain error in each 

recognition result under the same settings. Therefore, it is fairer and more reliable to use the average 

value of multiple experiments. 

Stability is the mean square error of N experimental results, which is defined as: 

 

��� = !∑  �
��
  ����� − ����� , (9) 

 

where ��� represents the degree of variation in the experimental results under the same settings. 

 

3.3 Network Training and Parameter Setting 

The following hardware were used for the experiment: i5-10400F 2.9 GHz CPU, NVIDIA GTX 1080Ti 

8 G GPU, and 16 GB RAM. The following software were used: Ubuntu 18.04.3 64-bit operating system, 

MATLAB version 2019a, PyTorch GPU 1.4.0 (to establish the training environment), and Python version 

3.6.2. 

During the experiment, as the training rounds progressed, the learning rate decayed to half of its 

original value when the loss rate ceased to decrease within three iterations. To mitigate model overfitting, 

dropout was integrated into the model to randomly deactivate neurons at a set random dropout rate of 

0.001. During the model training process, after each iteration of the training set, a validation set was 

tested, and the loss and accuracy were recorded. 

The joint loss function incorporates two weight parameters (� and �
), which require adjustment. 

Theoretically, the grid technique should be used to compute the optimal weights. It is more appropriate 

to reduce the constraint weight for intraclass variations within a range of 0.001–0.01. Hence, in the 

experiment, � was initially fixed at 0.01, while �
 was varied from 1 to 10. The recognition accuracy for 

the FER2013 dataset is shown in Fig. 6(b). Although the recognition accuracy was not strictly a convex 

curve, overall, the recognition accuracy was significantly higher when �
 = 7 compared with those for 

other cases. Consequently, �
 was set to 7, while � was varied at 0.0005, 0.001, 0.005, 0.01, and 0.05. 

The recognition accuracy for the FER2013 dataset is shown in Fig. 6(a). Fig. 6 shows that the model 

achieved the highest recognition rate when � was set at 0.005. Hence, we selected the values 0.005 and 

7 for � and �
, respectively. 
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(a) (b)

Fig. 6. Performance of the model with different weight values: (a) �� = 7 and (b) � = 0.01. 

 

3.4 Ablation Analysis 

To assess the influence of various components in the framework on the FER accuracy and stability, we 

conducted multiple sets of ablation experiments. The aim of these experiments was to evaluate the 

effectiveness and dependability of different modification strategies within the proposed FER framework. 

Tests were performed on the FER2013 and CK+ datasets, with consistent experimental parameters across 

the various test groups. The outcomes are summarized in Table 1. 

 

Table 1. Comparison of the experimental results for various improvement strategies 

Model 
Multi-feature 

fusion 

GCCA PD RA 

Joint loss 

function 

FER2013 CK+ 

Acc (%) Sta Acc (%) Sta 

1 × × × × × 69.79 0.38 92.14 0.31 

2 √ × × × × 71.53 0.35 93.01 0.27 

3 √ √ × × × 73.85 0.34 96.72 0.24 

4 √ √ √ × × 73.84 0.26 96.72 0.16 

5 √ √ √ √ × 73.97 0.25 97.94 0.13 

6 √ √ √ √ √ 74.08 0.24 98.66 0.11 

"×" denotes the components that were not used, and "√" indicates the components that were incorporated. 

 

Compared with the original VGG16 model (model 1), the different improvement strategies adopted in 

this study improved the model recognition accuracy and stability to a certain extent. It can be observed 

from the results that after adding the GCCA module, the effective features were enhanced, the redundant 

features were suppressed, and the model recognition accuracy was significantly improved. The multi-

feature fusion strategy combines the edge features obtained in the low-level blocks as constraints with 

the high-level semantic features obtained in the high-level blocks, thereby enabling the overall framework 

to learn more targeted areas and improve capturing of detailed information of subtle facial changes. The 

effect of the PD module on improving the recognition accuracy was not obvious; however, the module 

effectively reduced the computational complexity of the overall framework and significantly improved 

the stability of the model. The subsequent RA module supplemented the missing information and detailed 

features of the key expression regions to ensure better accuracy while increasing the processing speed. 

Finally, after applying multiple strategies, we attained an accuracy of 74.08% and 98.66% on the CK+ 

and FER2013 datasets, respectively. 
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3.5 Performance Evaluation and Comparison 

To further analyze the accuracy for various expression classes, we obtained the confusion matrices of 

FER results from different sources. The confusion matrices are presented in Figs. 7 and 8. 

 

 
Fig. 7. CK+ dataset confusion matrix: Acc (%). 

 

 
Fig. 8. FER2013 dataset confusion matrix: Acc (%). 

 

For the FER2013 dataset, the proposed model had a high recognition accuracy for happy and surprise 

expressions. However, the model could not accurately identify sad and fear expressions, with a 

recognition accuracy of only 55.98% and 61.01%, respectively. The distribution of dissimilar classes of 

samples in the FER2013 dataset was extremely unbalanced. The number of sad images in the training set 

was only approximately 500, whereas the number of happy images was more than 7,000. Moreover, two 

classes of expressions (sad and disgust) had similar changes in the mouth or eye areas of the human face, 

and the distinguishability of the expression features was relatively low, making them prone to recognition 

errors. 
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However, for the CK+ dataset, the accuracy for various classes of expressions was significantly higher 

than that for the FER2013 dataset, and the fluctuation in the recognition accuracy for different classes of 

expressions was very small. This is because the CK+ dataset is obtained under controlled laboratory 

conditions, and the facial images are clear without occlusion and environmental factors. In addition, fear, 

disgust, and sad expressions have a certain degree of similarity, which increases the difficulty of 

distinguishing between these three classes. 

Comparison of the average accuracy and stability of different models tested on the FER2013 and CK+ 

datasets is presented in Table 2. Our findings indicate that our model achieved the highest accuracy in 

expression recognition and displayed the best stability across both experimental datasets. 

Barman and Dutta [8] and Agarwal and Mukherjee [9] employed traditional FER methods based on 

manual features. In [8], the authors used an active shape model to extract facial contours and region 

positions, facilitating the extraction of salient FE features. However, this approach tends to lose key 

recognition and classification information, leading to relatively poor FER accuracy on both datasets. 

In [9], complex non-rigid motion facial components were captured by extracting scale-independent 

features and tracking pixel motion. Unfortunately, the generalization of this method is rather limited, 

particularly the performance of the model on the FER2013 dataset, which proved to be unsatisfactory. 

Among the deep learning methods, Mollahosseini et al. [11] adopted a fine-tuning strategy after pre-

training to achieve better recognition results compared with traditional methods. Nonetheless, network 

overfitting was a concern, and the feature attention mechanism was not considered. Verma et al. [14] 

processed image sequences through a visual branch network, introducing jump connections from a low 

level to a high level to consider underlying features. This significantly improved the model performance, 

but the method did not account for contextual information or the influence of highly similar expression 

classes on the recognition accuracy. 

Liu et al. [15] proposed a parallel multi-channeled convolutional network to learn effective feature 

representation through the integration of global and local features, achieving good accuracy and 

robustness. However, the FER accuracy on the unconstrained environment dataset FER2013 still requires 

improvement, indicating limited generalizability. 

 

Table 2. Performance comparison of different methods 

Method 
FER2013 dataset CK+ dataset 

Acc (%) Sta Acc (%) Sta 

Barman and Dutta [8] 48.75 0.31 92.15 0.28 

Agarwal and Mukherjee [9] 51.14 0.38 93.47 0.29 

Mollahosseini et al. [11] 58.72 0.41 95.36 0.35 

Verma et al. [14] 69.44 0.37 96.17 0.34 

Liu et al. [15] 72.01 0.35 96.49 0.29 

Proposed method 74.08 0.24 98.66 0.11 

 

Our approach achieved both accuracy and stability for both experimental datasets. This success can be 

attributed to our framework, which uses the improved VGGNet16 as the backbone and incorporates the 

GCCA module to capture crucial information in the deeper network layers. We fused multiple features, 

extracted shallow features from the low-level blocks of the backbone, and aggregated the deep details 
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from the high-level blocks using the PD module. Furthermore, the RA mechanism guides the entire 

network sequentially from top to bottom, allowing the mining of detailed information that requires 

supplementation. This approach makes full use of contextual information, leading to improved FER 

accuracy and model stability. 

 

 

4. Conclusion 

In this study, we developed a novel FER framework to address the limitations of traditional FER 

algorithms, which tend to overlook important features as the network depth increases during feature 

extraction. This framework is based on multiscale feature fusion, and incorporates an attention mecha-

nism that considers contextual information. The improved VGGNet was employed for FE feature 

extraction, complemented by a multiscale FM fusion strategy that introduced contextual information, 

thereby enhancing the recognition accuracy. In addition, we introduced an attention mechanism that 

improved the channel attention module based on group convolution to extract more expressive FER 

features. Our results confirmed the high accuracy of our model for FER tasks across various scenarios. 

However, although the FER2013 dataset can represent uncontrolled non-laboratory environments, it is 

primarily sourced from the Internet, potentially resulting in limited diversity in image quality and 

environmental conditions. This implies that the dataset may not comprehensively represent all of the 

possible real-world scenarios. The experimental dataset includes only seven major FEs, whereas real-

world expressions are much more diverse, encompassing a richer array of emotions and emotional 

expressions. In future research, we plan to further optimize the network structure and explore datasets 

that closely mimic real-world conditions, thereby enhancing the practical applications of our research. 
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