• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.029 seconds

WEED DETECTION BY MACHINE VISION AND ARTIFICIAL NEURAL NETWORK

  • S. I. Cho;Lee, D. S.;J. Y. Jeong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.270-278
    • /
    • 2000
  • A machine vision system using charge coupled device(CCD) camera for the weed detection in a radish farm was developed. Shape features were analyzed with the binary images obtained from color images of radish and weeds. Aspect, Elongation and PTB were selected as significant variables for discriminant models using the STEPDISC option. The selected variables were used in the DISCRIM procedure to compute a discriminant function for classifying images into one of the two classes. Using discriminant analysis, the successful recognition rate was 92% for radish and 98% for weeds. To recognize radish and weeds more effectively than the discriminant analysis, an artificial neural network(ANN) was used. The developed ANN model distinguished the radish from the weeds with 100%. The performance of ANNs was improved to prevent overfitting and to generalize well using a regularization method. The successful recognition rate in the farms was 93.3% for radish and 93.8% for weeds. As a whole, the machine vision system using CCD camera with the artificial neural network was useful to detect weeds in the radish farms.

  • PDF

Stochastic Pronunciation Lexicon Modeling for Large Vocabulary Continous Speech Recognition (확률 발음사전을 이용한 대어휘 연속음성인식)

  • Yun, Seong-Jin;Choi, Hwan-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • In this paper, we propose the stochastic pronunciation lexicon model for large vocabulary continuous speech recognition system. We can regard stochastic lexicon as HMM. This HMM is a stochastic finite state automata consisting of a Markov chain of subword states and each subword state in the baseform has a probability distribution of subword units. In this method, an acoustic representation of a word can be derived automatically from sample sentence utterances and subword unit models. Additionally, the stochastic lexicon is further optimized to the subword model and recognizer. From the experimental result on 3000 word continuous speech recognition, the proposed method reduces word error rate by 23.6% and sentence error rate by 10% compare to methods based on standard phonetic representations of words.

  • PDF

A Study on improving the performance of License Plate Recognition (자동차 번호판 인식 성능 향상에 관한 연구)

  • Eom, Gi-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.203-207
    • /
    • 2006
  • Nowadays, Cars are continuing to grow at an alarming rate but they also cause many problems such as traffic accident, pollutions and so on. One of the most effective methods that prevent traffic accidents is the use of traffic monitoring systems, which are already widely used in many countries. The monitoring system is beginning to be used in domestic recently. An intelligent monitoring system generates photo images of cars as well as identifies cars by recognizing their plates. That is, the system automatically recognizes characters of vehicle plates. An automatic vehicle plate recognition consists of two main module: a vehicle plate locating module and a vehicle plate number identification module. We study for a vehicle plate number identification module in this paper. We use image preprocessing, feature extraction, multi-layer neural networks for recognizing characters of vehicle plates and we present a feature-comparison method for improving the performance of vehicle plate number identification module. In the experiment on identifying vehicle plate number, 300 images taken from various scenes were used. Of which, 8 images have been failed to identify vehicle plate number and the overall rate of success for our vehicle plate recognition algorithm is 98%.

  • PDF

RecyMera: A Recycling Assistant System based on Object Recognition Technology (RecyMera : 사물 인식 기법에 기반한 재활용품 자동 분류 지원 시스템)

  • Lee, Seon-Ju;Jung, Hye-Ju;Ohm, Seong-Yong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.629-634
    • /
    • 2021
  • With the recent increase in the use of disposable products, it is urgently necessary to reduce the use of disposable products and to increase the recycling rate as much as possible in order to prevent environmental damage. In this paper, we introduce , a smartphone application that provides recycling-related information and supports correct separation and discharge. This system automatically recognizes and automatically classifies the type of item, by applying an effective object recognition technique, when the camera points at the item to be discharged. It is more effective and convenient compared to other existing smartphone applications. This system is expected to contribute to environmental protection by increasing the recycling rate in daily life.

Study on the Improvement of Speech Recognizer by Using Time Scale Modification (시간축 변환을 이용한 음성 인식기의 성능 향상에 관한 연구)

  • 이기승
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.462-472
    • /
    • 2004
  • In this paper a method for compensating for thp performance degradation or automatic speech recognition (ASR) is proposed. which is mainly caused by speaking rate variation. Before the new method is proposed. quantitative analysis of the performance of an HMM-based ASR system according to speaking rate is first performed. From this analysis, significant performance degradation was often observed in the rapidly speaking speech signals. A quantitative measure is then introduced, which is able to represent speaking rate. Time scale modification (TSM) is employed to compensate the speaking rate difference between input speech signals and training speech signals. Finally, a method for compensating the performance degradation caused by speaking rate variation is proposed, in which TSM is selectively employed according to speaking rate. By the results from the ASR experiments devised for the 10-digits mobile phone number, it is confirmed that the error rate was reduced by 15.5% when the proposed method is applied to the high speaking rate speech signals.

Study on Hand Gestures Recognition Algorithm of Millimeter Wave (밀리미터파의 손동작 인식 알고리즘에 관한 연구)

  • Nam, Myung Woo;Hong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.685-691
    • /
    • 2020
  • In this study, an algorithm that recognizes numbers from 0 to 9 was developed using the data obtained after tracking hand movements using the echo signal of a millimeter-wave radar sensor at 77 GHz. The echo signals obtained from the radar sensor by detecting the motion of a hand gesture revealed a cluster of irregular dots due to the difference in scattering cross-sectional area. A valid center point was obtained from them by applying a K-Means algorithm using 3D coordinate values. In addition, the obtained center points were connected to produce a numeric image. The recognition rate was compared by inputting the obtained image and an image similar to human handwriting by applying the smoothing technique to a CNN (Convolutional Neural Network) model trained with MNIST (Modified National Institute of Standards and Technology database). The experiment was conducted in two ways. First, in the recognition experiments using images with and without smoothing, average recognition rates of 77.0% and 81.0% were obtained, respectively. In the experiment of the CNN model with augmentation of learning data, a recognition rate of 97.5% and 99.0% on average was obtained in the recognition experiment using the image with and without smoothing technique, respectively. This study can be applied to various non-contact recognition technologies using radar sensors.

Analysis of Korean Spontaneous Speech Characteristics for Spoken Dialogue Recognition (대화체 연속음성 인식을 위한 한국어 대화음성 특성 분석)

  • 박영희;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.330-338
    • /
    • 2002
  • Spontaneous speech is ungrammatical as well as serious phonological variations, which make recognition extremely difficult, compared with read speech. In this paper, for conversational speech recognition, we analyze the transcriptions of the real conversational speech, and then classify the characteristics of conversational speech in the speech recognition aspect. Reflecting these features, we obtain the baseline system for conversational speech recognition. The classification consists of long duration of silence, disfluencies and phonological variations; each of them is classified with similar features. To deal with these characteristics, first, we update silence model and append a filled pause model, a garbage model; second, we append multiple phonetic transcriptions to lexicon for most frequent phonological variations. In our experiments, our baseline morpheme error rate (WER) is 31.65%; we obtain MER reductions such as 2.08% for silence and garbage model, 0.73% for filled pause model, and 0.73% for phonological variations. Finally, we obtain 27.92% MER for conversational speech recognition, which will be used as a baseline for further study.

Method of Speech Feature Parameter Extraction Using Modified-MFCC (Modified-MECC를 이용한 음성 특징 파라미터 추출 방법)

  • 이상복;이철희;정성환;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.269-272
    • /
    • 2001
  • In speech recognition technology, the utterance of every talker have special resonant frequency according to shape of talker's lip and to the motion of tongue. And utterances are different according to each talker. Accordingly, we need the superior moth-od of speech feature parameter extraction which reflect talker's characteristic well. This paper suggests the modified-MfCC combined existing MFCC with gammatone filter. We experimented with speech data from telephone and then we obtained results of enhanced speech recognition rate which is higher than that of the other methods.

  • PDF

Object Recognition by Invariant Feature Extraction in FLIR (적외선 영상에서의 불변 특징 정보를 이용한 목표물 인식)

  • 권재환;이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.65-68
    • /
    • 2000
  • This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.

  • PDF

A Study on 1-D Bit-Serial Array Processor Design for Code-String Matching Using a MWLD Algorithm (MWLD 알고리즘을 이용한 문자열정합 1차원 Bit-Serial 어레이 프로세서의 설계)

  • 박종진;김은원;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.1-8
    • /
    • 1992
  • This paper is proposed a Modified WLD (Weighted Levenshtein Distance) algorithm for processor desihn of code-string matching. A proposed MWLD (Modified Weighted Levenshtein Distance) algorithm is consist of 1-dimension bit-serial array processor to pattern matching using a Hamming Distance. The proposed processor is applied to recognition of character with real time input. The recognition rate of Hangul strokes is resulted to 98.65$\%$

  • PDF