• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.031 seconds

Hand Tracking and Hand Gesture Recognition for Human Computer Interaction

  • Bai, Yu;Park, Sang-Yun;Kim, Yun-Sik;Jeong, In-Gab;Ok, Soo-Yol;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.182-193
    • /
    • 2011
  • The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.

Improvement of Speech Recognition System Using the Trained Model of Speech Feature (음성특성 학습 모델을 이용한 음성인식 시스템의 성능 향상)

  • 송점동
    • The Journal of Information Technology
    • /
    • v.3 no.4
    • /
    • pp.1-12
    • /
    • 2000
  • We can devide the speech into high frequency speech and low frequency speech according to the feature of the speech, However so far the construction of the recognizer without concerning this feature causes low recognition rate relatively and the needs of an amount of data in the research on the speech recognition. In this paper, we propose the method that can devide this feature of speaker's speech using the Formant frequency, and the method that can recognize the speech after constructing the recognizer model reflecting the feature of the high and low frequency of the speaker's speech, For the experiment we constructed the recognizer model using 47 mono-phone of Korean and trained the recognizer model using 20 women's and men's speech respectively. We divided the feature of speech using the Formant frequency Table, that had been consisted of the Formant frequency, and the value of pitch, and then We performed recognition using the trained model according to the feature of speech The proposed system outperformed the existing method in the recognition rate, as the result.

  • PDF

Reconstruction of Partially Damaged face for Improving a Face Recognition Rate (얼굴 인식률 향상을 위한 손상된 얼굴 영역의 복원)

  • 최재영;황승호;김낙빈
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.308-318
    • /
    • 2004
  • A subject to recognize the damaged facial image is becoming an important issue in commercialization of automatic face recognition. The method to recognize a face on a damaged image is divided into two types. The one is to recognize remainders after removing the damaged information and the other is to recognize a total face after recovering the damaged information. On this paper, we present the reconstruction method by analyzing the main materials after extracting the damaged region through Kohonen network. The suggested algorithm in this paper estimates feature vectors of the damaged region using eigen-faces in PCA and then reconstructs the damaged image. This allows also the reconstruction under the untrained images. Through testing the artificial images where the eye and the mouth which have many effects to face recognition are damaged, the recognition rate of the proposed results showed similar results with the method which used Kohonen network, and improved about 11.8% more than symmetrical property method. Also, in case of the untrained image, our results improved about 14% more than that of the Kohonen method and about 7% more than that of the symmetrical property method.

  • PDF

A Study on the Implementation Methods of MLP Neural Networks for the Recognition of Handwritten Numerals and the Rejection of Non-Numerals (필기체 숫자의 인식과 비숫자의 기각을 위한 MLP 신경망의 구현 방법에 관한 연구)

  • Lim Kil-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1607-1615
    • /
    • 2005
  • This Paper describes the implementation methods of MLP (mulilayer perceptrons) neural networks to recognize or reject handwritten numerals and non-nummerals. The MLP has known to be a very efficient classifier to recognize handwritten numerals in terms of recognition accuracy, speed, and memory requirements. In the previous researches, however, researchers have focused on the only numeral inputs and have not payed attention to the non-numeral inputs with respect to recognition accuracy, rejection rates, and other characteristics. In this paper, we present some implementation methods of the MLP in the environments that numeral and non-numerals are mixed. The MLPs have been developed by three methods, and investigated with three error types introduced. The experiments have been conducted on a total of 66,701 images of numerals and non-numerals. The promising method to recognize numerals and reject non-numerals has been described in terms of the three error types.

A Study on Facial Expression Recognition using Boosted Local Binary Pattern (Boosted 국부 이진 패턴을 적용한 얼굴 표정 인식에 관한 연구)

  • Won, Chulho
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1357-1367
    • /
    • 2013
  • Recently, as one of images based methods in facial expression recognition, the research which used ULBP block histogram feature and SVM classifier was performed. Due to the properties of LBP introduced by Ojala, such as highly distinction capability, durability to the illumination changes and simple operation, LBP is widely used in the field of image recognition. In this paper, we combined $LBP_{8,2}$ and $LBP_{8,1}$ to describe micro features in addition to shift, size change in calculating ULBP block histogram. From sub-windows of 660 of $LBP_{8,1}$ and 550 of $LBP_{8,2}$, ULBP histogram feature of 1210 were extracted and weak classifiers of 50 were generated using AdaBoost. By using the combined $LBP_{8,1}$ and $LBP_{8,2}$ hybrid type of ULBP histogram feature and SVM classifier, facial expression recognition rate could be improved and it was confirmed through various experiments. Facial expression recognition rate of 96.3% by hybrid boosted ULBP block histogram showed the superiority of the proposed method.

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning (가변 학습을 적용한 퍼지 ART 신경망의 패턴 인식 능력 향상)

  • Lee, Chang Joo;Son, Byounghee;Hong, Hee Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.954-961
    • /
    • 2013
  • In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weight vector is greatly influenced from the input pattern where it is on the boundary of the category. Thus, in noisy environments, this method has a problem in increasing unnecessary categories and reducing pattern recognition capacity. In the proposed method, the lower similarity between the representative pattern and input pattern is, the lower input pattern contributes for updating weight vector. As a result, this results in suppressing the unnecessary category proliferation and improving pattern recognition capacity of the Fuzzy ART in noisy environments.

Study on News Video Character Extraction and Recognition (뉴스 비디오 자막 추출 및 인식 기법에 관한 연구)

  • 김종열;김성섭;문영식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.10-19
    • /
    • 2003
  • Caption information in news videos can be useful for video indexing and retrieval since it usually suggests or implies the contents of the video very well. In this paper, a new algorithm for extracting and recognizing characters from news video is proposed, without a priori knowledge such as font type, color, size of character. In the process of text region extraction, in order to improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text regions are automatically detected to compose an average frame. The image of the averaged frame is projected to horizontal and vertical direction, and we apply region filling to remove backgrounds to produce the character. Then, K-means color clustering is applied to remove remaining backgrounds to produce the final text image. In the process of character recognition, simple features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with the pre-composed character feature set to recognize the characters. Experimental results tested on various news videos show that the proposed method is superior in terms of caption extraction ability and character recognition rate.

A Study on the Multilingual Speech Recognition for On-line International Game (온라인 다국적 게임을 위한 다국어 혼합 음성 인식에 관한 연구)

  • Kim, Suk-Dong;Kang, Heung-Soon;Woo, In-Sung;Shin, Chwa-Cheul;Yoon, Chun-Duk
    • Journal of Korea Game Society
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2008
  • The requests for speech-recognition for multi-language in field of game and the necessity of multi-language system, which expresses one phonetic model from many different kind of language phonetics, has been increased in field of game industry. Here upon, the research regarding development of multi-national language system which can express speeches, that is consist of various different languages, into only one lexical model is needed. In this paper is basic research for establishing integrated system from multi-language lexical model, and it shows the system which recognize Korean and English speeches into IPA(International Phonetic Alphabet). We focused on finding the IPA model which is satisfied with Korean and English phoneme one simutaneously. As a result, we could get the 90.62% of Korean speech-recognition rate, also 91.71% of English speech-recognition rate.

  • PDF

Deep Learning Based Tree Recognition rate improving Method for Elementary and Middle School Learning

  • Choi, Jung-Eun;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.9-16
    • /
    • 2019
  • The goal of this study is to propose an efficient model for recognizing and classifying tree images to measure the accuracy that can be applied to smart devices during class. From the 2009 revised textbook to the 2015 revised textbook, the learning objective to the fourth-grade science textbook of elementary schools was added to the plant recognition utilizing smart devices. In this study, we compared the recognition rates of trees before and after retraining using a pre-trained inception V3 model, which is the support of the Google Inception V3. In terms of tree recognition, it can distinguish several features, including shapes, bark, leaves, flowers, and fruits that may lead to the recognition rate. Furthermore, if all the leaves of trees may fall during winter, it may challenge to identify the type of tree, as only the bark of the tree will remain some leaves. Therefore, the effective tree classification model is presented through the combination of the images by tree type and the method of combining the model for the accuracy of each tree type. I hope that this model will apply to smart devices used in educational settings.

A Study on Performance Enhancement for Iris Recognition by Eyelash Detection (속눈썹 추출 방법을 이용한 홍채 인식 성능 향상 연구)

  • Kang Byung Joon;Park Kang Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.233-238
    • /
    • 2005
  • With iris recognition algorithm, unique iris code can be generated and user can be identified by using iris pattern. However, if unnecessary information such as eyelash is included in iris region, the error for iris recognition is increased, consequently. In detail, if iris region is used to generate ins code not excluding eyelash and the position of eyelash is moved, the iris codes are also changed and the error rate is increased. To overcome such problem, we propose the method of detecting eyelash by using mask and excluding the detected eyelash region in case of generating iris code. Experimental results show that EER(Equal Error Rate) for iris recognition using the proposed algorithm is lessened as much as $0.18\%$ compared to that not using it.