• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.033 seconds

Footprint-based Person Identification Method using Mat-type Pressure Sensor

  • Jung, Jin-Woo;Lee, Sang-Wan;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.106-109
    • /
    • 2003
  • Many diverse methods have been developing in the field of biometric identification as human-friendliness has been emphasized in the intelligent system's area. One of emerging method is to use human footprint. Automated footprint-based person recognition was started by Nakajima et al.'s research but they showed relatively low recognition result by low spatial resolution of pressure sensor and standing posture. In this paper, we proposed a modified Nakajima's method to use walking footprint which could give more stable toe information than standing posture. Finally, we prove the usefulness of proposed method as 91.4tt recognition rate in 11 volunteers' test.

  • PDF

Recognition of Car License Plates using Morphological Information and SOM Algorithm

  • Lim, Eun-Kyung;Kim, Young-Ju;Kim, Dae-Su;Kwang-Baek, Kim
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.648-651
    • /
    • 2003
  • In this paper, we propose the recognition system of a license plate using SOM algorithm. The recognition of license plate was investigated by means of the SOM algorithm. The morphological information of horizontal and vertical edges was used to extract a plate region from a car image. In addition, the 4-direction contour tracking algorithm was applied to extract the specific area, which includes characters from an extracted plate area. Therefore, we proposed how to extract license plate region using morphological information and how to recognize the character string using SOM algorithm. In this paper, 50 car images were tested. The extraction rate obtained by the proposed extraction method showed better results than that from the color information of RGB and HSI, respectively. And the license plate recognition using SOM algorithm was very efficient.

  • PDF

Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern

  • Kim, Deok-Hwan;Cho, Chi-Young;Ryu, Jaehwan
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a new locomotion mode recognition method based on a transformed correlation feature analysis using an electromyography (EMG) pattern. Each movement is recognized using six weighted subcorrelation filters, which are applied to the correlation feature analysis through the use of six time-domain features. The proposed method has a high recognition rate because it reflects the importance of the different features according to the movements and thereby enables one to recognize real-time EMG patterns, owing to the rapid execution of the correlation feature analysis. The experiment results show that the discriminating power of the proposed method is 85.89% (${\pm}2.5$) when walking on a level surface, 96.47% (${\pm}0.9$) when going up stairs, and 96.37% (${\pm}1.3$) when going down stairs for given normal movement data. This makes its accuracy and stability better than that found for the principal component analysis and linear discriminant analysis methods.

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

A Study on University Student's Recognition and Preference of Korean Rice Cake in Incheon Area (인천지역 대학생의 떡의 인지도 및 기호도에 관한 연구)

  • 노정옥;우경자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The purpose of this study was to investigate the university students' recognition and preference of Korean rice cakes. Self administered questionnaires were collected from 302 students in Incheon area. Statistical data analysis was completed using a SPSS 10.0 program. The recognition of Korean rice cake was generally high: Injeolmi, Garaeddeok, Bakseolgi, Songpyun, Patsirooddeok, Bindaeddeok, Yaksik Julpyun, Gyungdan, Moojigaeddeok were high1y recognized, but Gaesungjooak, Sugyibyung, Seunggeomchopyun poorly recognized by university students. The most common consumption frequency rate of students was once or twice a month (Male 31.9%; Female 41.6%). Most students ate rice cakes as snack with water, Kimchi, fruits, beverage(Cola, Cider) and Korean traditional beverage(Sujunggwa, Sighye). The sales possibility of Korean rice cake at university canteens was dependent on the characteristics different from those of rice cafes itself, for example,. nutritional labelling, mass, atmosphere and package, etc.

  • PDF

Dynamic Human Activity Recognition Based on Improved FNN Model

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.417-424
    • /
    • 2012
  • In this paper, we propose an automatic system that recognizes dynamic human gestures activity, including Arabic numbers from 0 to 9. We assume the gesture trajectory is almost in a plane that called principal gesture plane, then the Least Squares Method is used to estimate the plane and project the 3-D trajectory model onto the principal. An improved FNN model combined with HMM is proposed for dynamic gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network. The proposed algorithm shows that satisfactory performance and high recognition rate.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • v.2 no.1
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

Recognition of vehicle number plate using multi backpropagation neural network (다중 역전파 신경망을 이용한 차량 번호판의 인식)

  • 최재호;조범준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2432-2438
    • /
    • 1997
  • This paper proposes recognition system using multi-backpropagation neural networks rather than single backpropagation neural network to enhance the rate of character recognition resultsing from extracting the region of velhicle number in that the image of vehicle number plate from CCD camera has a distinguish feature, that is, illumination of a pattern. The experiment in this paper shows an output that the method using multi-backpropagation neural networks rather than signal backpropagation neural network takes less training time for computation and also has higher recognition rage of vehicle number.

  • PDF

Recognition of Korean Isolated Digits Using a Pole-Zero Model (Polo-Zero 모델을 이용한 한국어 단독 숫자음 인식)

  • ;;Alan Conrad Bovik
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.356-365
    • /
    • 1988
  • In this paper, we describe an isolated words recognition system for Korean isolated digits based on a voiced -unvoiced decision algorithm and a frequency domain analysis. The algorithm first performs a voiced-unvoiced decision procedure for the begtinning part of each uttered work using the normalized log energy and zero crossing rate as decision parameters. Based on this decision,. each word is assigned to one of two classes. In order to identify the uttered word within each class, a dynamic time warping algorithm is applied using formant frequencies as the basis for the distance measure. We exploit a pole-zero analysis to measure formant frequencies in each frame. We have observed that pole-zero analysis can provide more accurate estimation of formant frequencies than analysis based on poles only. Experimental recognition rates of 97.3% illustrating the performance of the recognition system was achieved.

  • PDF

The character classifier using circular mask dilation method (원형 마스크 팽창법에 의한 무자인식)

  • 박영석;최철용
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.913-916
    • /
    • 1998
  • In this paper, to provide the robustness of character recognition, we propose a recognition method using the dilated boundary curve feature which has the invariance characteristics for the shift, scale, and rotation changes of character pattern. And its some characteristics and effectieness are evaluated through the experiments for both the english alphabets and the numeral digits. The feature vector is represented by the fourier descriptor for a boundary curve of the dilated character pattern which is generated by the circular mask dilation method, and is used for a nearest neighbort classifier(NNC) or a nearest neighbor mean classifier(NNMC). These the processing time and the recognition rate, and take also the robustness of recognition for both some internal noise and partial corruption of an image pattern.

  • PDF