• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.027 seconds

Speech Recognition Based on VQ/NN using Fuzzy (Fuzzy를 이용한 VQ/NN에 기초를 둔 음성 인식)

  • Ann, Tae-Ock
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.5-11
    • /
    • 1996
  • This paper is the study for recognizing single vowels of speaker-independent, and we suppose a method of speech recognition using VQ(Vector Quantization)/NN(Neural Network). This method makes a VQ codebook, which is used for obtaining the observation sequence, and then claculates the probability value by comparing each codeword with the data, finally uses these probability values for the input value of the neural network. Korean signle vowels are selected for our recognition experiment, and ten male speakers pronounced eight single vowels ten times. We compare the performance of our method with those of fuzzy VQ/HMM and conventional VQ/NN According to the experiment result, the recognition rate by VQ/NN is 92.3%, by VQ/HMM using fuzzy is 93.8% and by VQ/NN using fuzzy is 95.7%. Therefore, it is shown that recognition rate of speech recognition by fuzzy VQ/NN is better than those of fuzzy VQ/HMM and conventional VQ/HMM because of its excellent learning ability.

  • PDF

Recognition of Car License Plate Using Geometric Information from Portable Device Image (휴대단말기 영상에서의 기하학적 정보를 이용한 차량 번호판 인식)

  • Yeom, Hee-Jung;Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.1-8
    • /
    • 2010
  • Recently, the character image processing technology using portable device camera image at home and abroad are actively conducted, but Practical use are lower rate because of accuracy and time-consuming process problems. In this paper, we propose the license plate recognition method based on geometric information from portable device camera image. In the extracted license plate region we recognize characters using the chain code and the Thickness information through the cumulative projected edge after performing the pre-processing work considering the angle difference, the contrast enhancement and the low resolution from portable device camera image. The proposed algorithm is effective and accurate recognition by light and reducing the processing time. And, the results from the character recognition success rate was 95%. In the future, we will research about license plate recognition algorithm using long distance image or added motion blur image.

Decision Rule using Confidence Based Anti-phone Model and Interrupt-Polling Method for Distributed Speech Recognition DSP Networking System (분산형 음성인식 DSP 네트워킹 시스템을 위한 반음소 모델기반의 신뢰도를 사용한 결정규칙과 인터럽트-폴링)

  • Song, Ki-Chang;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1016-1022
    • /
    • 2010
  • Far-talking recognition and distributed speech recognition networking techniques are essential to control various and complex home services conveniently with voices. It is possible to control devices everywhere at home by using only voices. In this paper, we have developed the server-client DSP module for distributed speech recognition network system and proposed a new decision rule to decide intelligently whether to accept the recognition results or not by the transferred confidence rate. Simulation results show that the proposed decision rule delivers better performances than the conventional decision by majority rule or decision by first-arrival. Also, we have proposed the new interrupt-polling technique to remedy the defect of existing delay technique which always has to wait several clients' results for a few seconds. The proposed technique queries all client's status after first-arrival and decides whether to wait or not. It can remove unnecessary delay-time without any performance degradation.

Fall Recognition Algorithm Using Gravity-Weighted 3-Axis Accelerometer Data (3축 가속도 센서 데이터에 중력 방향 가중치를 사용한 낙상 인식 알고리듬)

  • Kim, Nam Ho;Yu, Yun Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.254-259
    • /
    • 2013
  • A newly developed fall recognition algorithm using gravity weighted 3-axis accelerometer data as the input of HMM (Hidden Markov Model) is introduced. Five types of fall feature parameters including the sum vector magnitude(SVM) and a newly-defined gravity-weighted sum vector magnitude(GSVM) are applied to a HMM to evaluate the accuracy of fall recognition. A GSVM parameter shows the best accuracy of falls which is 100% of sensitivity and 97.96% of specificity, and comparing with SVM, the results archive more improved recognition rate, 5.2% of sensitivity and 4.5% of specificity. GSVM shows higher recognition rate than SVM due to expressing falls characteristics well, whereas SVM expresses the only momentum.

Human Touching Behavior Recognition based on Neural Network in the Touch Detector using Force Sensors (힘 센서를 이용한 접촉감지부에서 신경망기반 인간의 접촉행동 인식)

  • Ryu, Joung-Woo;Park, Cheon-Shu;Sohn, Joo-Chan
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.910-917
    • /
    • 2007
  • Of the possible interactions between human and robot, touch is an important means of providing human beings with emotional relief. However, most previous studies have focused on interactions based on voice and images. In this paper. a method of recognizing human touching behaviors is proposed for developing a robot that can naturally interact with humans through touch. In this method, the recognition process is divided into pre-process and recognition Phases. In the Pre-Process Phase, recognizable characteristics are calculated from the data generated by the touch detector which was fabricated using force sensors. The force sensor used an FSR (force sensing register). The recognition phase classifies human touching behaviors using a multi-layer perceptron which is a neural network model. Experimental data was generated by six men employing three types of human touching behaviors including 'hitting', 'stroking' and 'tickling'. As the experimental result of a recognizer being generated for each user and being evaluated as cross-validation, the average recognition rate was 82.9% while the result of a single recognizer for all users showed a 74.5% average recognition rate.

Iris Recognition using Gabor Wavelet and Fuzzy LDA Method (가버 웨이블릿과 퍼지 선형 판별분석 기법을 이용한 홍채 인식)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1147-1155
    • /
    • 2005
  • This paper deals with Iris recognition as one of biometric techniques which is applied to identify a person using his/her behavior or congenital characteristics. The Iris of a human eye has a texture that is unique and time invariant for each individual. First, we obtain the feature vector from the 2D Iris pattern having a property of size invariant and using the fuzzy LDA which is further through four types of 2D Gabor wavelet. At the recognition process, we compute the similarity measure based on the correlation values. Here, since we use four different matching values obtained from four different directional Gabor wavelet and select the maximum value, it is possible to minimize the recognition error rate. To show the usefulness of the proposed algorithm, we applied it to a biometric database consisting of 300 Iris Patterns extracted from 50 subjects and finally got more higher than $90\%$ recognition rate.

Infrared Gait Recognition using Wavelet Transform and Linear Discriminant Analysis (웨이블릿 변환과 선형 판별 분석법을 이용한 적외선 걸음걸이 인식)

  • Kim, SaMun;Lee, DaeJong;Chun, MyungGeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.622-627
    • /
    • 2014
  • This paper proposes a new method which improves recognition rate on the gait recognition system using wavelet transform, linear discriminant analysis and genetic algorithm. We use wavelet transform to obtain the four sub-bands from the gait energy image. In order to extract feature data from sub-bands, we use linear discriminant analysis. Distance values between training data and four sub-band data are calculated and four weights which are calculated by genetic algorithm is assigned at each sub-band distance. Based on a new fusion distance value, we conducted recognition experiments using k-nearest neighbors algorithm. Experimental results show that the proposed weight fusion method has higher recognition rate than conventional method.

Driving Condition based Dynamic Frame Skip Method for Processing Real-time Image Recognition Methods in Smart Driver Assistance Systems (스마트 운전자 보조 시스템에서 영상인식기법의 실시간 처리를 위한 운전 상태 기반의 동적 프레임 제외 기법)

  • Son, Sanghyun;Jeon, Yongsu;Baek, Yunju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • According to evolution of technologies, many devices related to various applications were researched. The advanced driver assistance system is a famous technique effected from the evolution. The technique of driver assistance uses image recognition methods to collect exactly information around the vehicle. The computing power of driver assistance device has become more improved than in the past. However, it's difficult that processed various recognition methods at real-time. We propose new frame skip method to process various recognition methods at real-time in the limited hardware. In the previous researches, frame skip rate was set up static values, thus the number of processed frames through recognition methods was smaller. We set up the frame skip rate dynamically using a driving condition of vehicle through speed and acceleration value, in addition, the number of processed frames was maximized. The performance is improved more 32.5% than static frame skip method.

A Study on Deep Learning Structure of Multi-Block Method for Improving Face Recognition (얼굴 인식률 향상을 위한 멀티 블록 방식의 딥러닝 구조에 관한 연구)

  • Ra, Seung-Tak;Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.933-940
    • /
    • 2018
  • In this paper, we propose a multi-block deep learning structure for improving face recognition rate. The recognition structure of the proposed deep learning consists of three steps: multi-blocking of the input image, multi-block selection by facial feature numerical analysis, and perform deep learning of the selected multi-block. First, the input image is divided into 4 blocks by multi-block. Secondly, in the multi-block selection by feature analysis, the feature values of the quadruple multi-blocks are checked, and only the blocks with many features are selected. The third step is to perform deep learning with the selected multi-block, and the result is obtained as an efficient block with high feature value by performing recognition on the deep learning model in which the selected multi-block part is learned. To evaluate the performance of the proposed deep learning structure, we used CAS-PEAL face database. Experimental results show that the proposed multi-block deep learning structure shows 2.3% higher face recognition rate than the existing deep learning structure.

Implementation of User Gesture Recognition System for manipulating a Floating Hologram Character (플로팅 홀로그램 캐릭터 조작을 위한 사용자 제스처 인식 시스템 구현)

  • Jang, Myeong-Soo;Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.143-149
    • /
    • 2019
  • Floating holograms are technologies that provide rich 3D stereoscopic images in a wide space such as advertisement, concert. In addition, It is possible to reduce the 3D glasses inconvenience, eye strain, and space distortion, and to enjoy 3D images with excellent realism and existence. Therefore, this paper implements a user gesture recognition system for manipulating a floating hologram characters that can be used in a small space devices. The proposed method detects face region using haar feature-based cascade classifier, and recognizes the user gestures using a user gesture-occurred position information that is acquired from the gesture difference image in real time. And Each classified gesture information is mapped to the character motion in floating hologram for manipulating a character action. In order to evaluate the performance of the proposed user gesture recognition system for manipulating a floating hologram character, we make the floating hologram display devise, and measures the recognition rate of each gesture repeatedly that includes body shaking, walking, hand shaking, and jumping. As a results, the average recognition rate was 88%.