• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.033 seconds

Face Detection based on Video Sequence (비디오 영상 기반의 얼굴 검색)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.45-49
    • /
    • 2008
  • Face detection and tracking technology on video sequence has developed indebted to commercialization of teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Complex background, color distortion by luminance effect and condition of luminance has hindered face recognition system. In this paper, we have proceeded to research of face recognition on video sequence. We extracted facial area using luminance and chrominance component on $YC_bC_r$ color space. After extracting facial area, we have developed the face recognition system applied to our improved algorithm that combined PCA and LDA. Our proposed algorithm has shown 92% recognition rate which is more accurate performance than previous methods that are applied to PCA, or combined PCA and LDA.

  • PDF

Speech Parameters for the Robust Emotional Speech Recognition (감정에 강인한 음성 인식을 위한 음성 파라메터)

  • Kim, Weon-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

Activity Recognition Using Sensor Networks

  • Lee Jae-Hun;Lee Byoun-Gyun;Chung Woo-Yong;Kim Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.197-201
    • /
    • 2006
  • In the implementation of a smart home, activity recognition technology using simple sensors is very important. In this paper, we propose a new activity recognition method based on Bayesian network (BN). The structure of the BN is learned by K2 algorithm and is composed of sensor nodes, activity nodes and time node whose state is quantized with reasonable interval. In the proposed method, the BN has less complexity and provides better activity recognition rate than the previous method.

Pose Invariant View-Based Enhanced Fisher Linear Discriminant Models for Face Recognition

  • Lee, Sung-Oh;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.2-101
    • /
    • 2001
  • This paper proposes a novel face recognition algorithm to recognize human face robustly under various conditions, such as changes of pose, illumination, and expression, etc. at indoor environments. A conventional automatic face recognition system consists of the detection and the recognition part. Generally, the detection part is dominant over the other part in the estimating whole recognition rate. So, in this paper, we suggest the view-specific eigenface method as preprocessor to estimate various poses of the face in the input image. Then, we apply the Enhanced FLD Models (EFM) to the result of it, twice. Because, the EFM recognizes human face, and reduces the error of standardization effectively. To deal with view-varying problem, we build one basis vector set for each view individually. Finally, the dimensionalities of ...

  • PDF

High Speed Character Recognition by Multiprocessor System (멀티 프로세서 시스템에 의한 고속 문자인식)

  • 최동혁;류성원;최성남;김학수;이용균;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.8-18
    • /
    • 1993
  • A multi-font, multi-size and high speed character recognition system is designed. The design principles are simpilcity of algorithm, adaptibility, learnability, hierachical data processing and attention by feed back. For the multi-size character recognition, the extracted character images are normalized. A hierachical classifier classifies the feature vectors. Feature is extracted by applying the directional receptive field after the directional dege filter processing. The hierachical classifier is consist of two pre-classifiers and one decision making classifier. The effect of two pre-classifiers is prediction to the final decision making classifier. With the pre-classifiers, the time to compute the distance of the final classifier is reduced. Recognition rate is 95% for the three documents printed in three kinds of fonts, total 1,700 characters. For high speed implemention, a multiprocessor system with the ring structure of four transputers is implemented, and the recognition speed of 30 characters per second is aquired.

  • PDF

Implementation of An On-Line Continuous Recognition System for Cursive Handwriting (자소간의 흘림을 허용하는 연속형 온라인 필기 인식 시스템의 구현)

  • 권오성;권영빈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.166-177
    • /
    • 1994
  • In this paper, an implemenation of on-line continuous recognizer for cursive Hangul handwriting is explained. For the Hangul recognition system, we propose a high speed string matching. The editing process in our proposed string matching is accomplished by single editing path. And the matching results are stored in a heap structure and we decide the user comfortibility of unceasing writing during recognition owing to the high speed matching. In the experimental result, a recongition rate of 86.36% at 1.75 second/character over 21,076 characters collected from 50 persons are abtained. And it is shown that the proposed recognition system is operated properly for the on-line recognition for cursive handwring between graphemes.

  • PDF

Motion Recognition of Smartphone using Sensor Data (센서 정보를 활용한 스마트폰 모션 인식)

  • Lee, Yong Cheol;Lee, Chil Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1437-1445
    • /
    • 2014
  • A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).

A New Speech Recognition Model : Dynamically Localized Self-organizing Map Model (새로운 음성 인식 모델 : 동적 국부 자기 조직 지도 모델)

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.20-24
    • /
    • 1994
  • A new speech recognition model, DLSMM(Dynamically Localized Self-organizing Map Model) and its effective training algorithm are proposed in this paper. In DLSMM, temporal and spatial distortions of speech are efficiently normalized by dynamic programming technique and localized self-organizing maps, respectively. Experiments on Korean digits recognition have been carried out. DLSMM has smaller Experiments on Korean digits recognition have been carried out. DLSMM has smaller connections than predictive neural network models, but it has scored a little high recognition rate.

  • PDF

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Adaptive Recognition System of the I1-Pa Stenographic Character Images by Using Line Scan Method and BEP

  • Kim, Sangkeun;Lee, Sungoh;Park, Gwitae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.354-354
    • /
    • 2000
  • In this paper, we would study the applicability of neural networks to the recognition process of Korean stenographic character image, applying the classification function, which is the greatest merit of those of neural networks applied to the various pans so far, to the stenographic character recognition, relatively simple classification work. Korean stenographic recognition algorithms, which recognize the characters by using some methods, have a quantitative problem that despite the simplicity of the structure, a lot of basic characters are impossible to classify into a type. They also have qualitative one that it is not easy to classify characters for the delicacy of the character forms. Even though this is the result of experiment under the limited environment of the basic characters, this shows the possibility that the stenographic characters can be recognized effectively by neural network system. In this system, we got 90.86% recognition rate as an average.

  • PDF