• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.028 seconds

A Study on EMG Signals Recognition using Time Delayed Counterpropagation Neural Network (시간 지연을 갖는 쌍전파 신경회로망을 이용한 근전도 신호인식에 관한 연구)

  • Kwon, Jangwoo;Jung, Inkil;Hong, Seunghong
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.395-401
    • /
    • 1996
  • In this paper a new neural network model, time delayed counterpropagation neural networks (TDCPN) which have high recognition rate and short total learning time, is proposed for electromyogram(EMG) recognition. Signals the proposed model increases the recognition rates after learned the regional temporal correlation of patterns using time delay properties in input layer, and decreases the learning time by using winner-takes-all learning rule. The ouotar learning rule is put at the output layer so that the input pattern is able to map a desired output. We test the performance of this model with EMG signals collected from a normal subject. Experimental results show that the recognition rates of the suggested model is better and the learning time is shorter than those of TDNN and CPN.

  • PDF

The Recognition of Printed HANGUL Character (인쇄체 한글 문자 인식에 관한 연구)

  • Jang, Seung-Seok;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.27-37
    • /
    • 1991
  • A recognition algorithm for Hangul is developed by structural analysis to Hangul in this theses. Four major procedures are proposed : preprocessing, type classification, separation of consonant and vowel, recognition. In the preprocessing procedure, the thinning algorithm proposed by CHEN & HSU is applied. In the type classification procedure, thinned Hangul image is classified into one of six formal types. In the separation of consonant and vowel procedure, starting from branch-points which are existed in a vowel, character elements are separated by means of tracing branch-point pixel by pixel and comparison with proposed templates. In the same time, the vowels are recognized. In the recognition procedure, consonants are extracted from the separated Hangul character and recognized by modified Crossing method. Recognized characters are converted into KS-5601-1989 codes. The experiments show that correct recognition rate is about 80%-90% and recognition speed is about 2-3 character persecond in three types of different input data on computer with 80386 microprocessor.

  • PDF

An Isolated Word Recognition Using the Mellin Transform (Mellin 변환을 이용한 격리 단어 인식)

  • 김진만;이상욱;고세문
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.905-913
    • /
    • 1987
  • This paper presents a speaker dependent isolated digit recognition algorithm using the Mellin transform. Since the Mellin transform converts a scale information into a phase information, attempts have been made to utilize this scale invariance property of the Mellin transform in order to alleviate a time-normalization procedure required for a speech recognition. It has been found that good results can be obtained by taking the Mellin transform to the features such as a ZCR, log energy, normalized autocorrelation coefficients, first predictor coefficient and normalized prediction error. We employed a difference function for evaluating a similarity between two patterns. When the proposed algorithm was tested on Korean digit words, a recognition rate of 83.3% was obtained. The recognition accuracy is not compatible with the other technique such as LPC distance however, it is believed that the Mellin transform can effectively perform the time-normalization processing for the speech recognition.

  • PDF

Grapheme-based on-line recognition of cursive korean characters (자소 단위의 온라인 흘림체 한글 인식)

  • 정기철;김상균;이종국;김행준
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.124-134
    • /
    • 1996
  • Korean has a large set of characters, and has a two-dimensional formation: each character is composed of graphemes in two dimensions. Whereas connections between characters are rare, connections inside a grapheme and between graphemes happen frequently and these connections generate many cursive strokes. To deal with the large character set and the cursive strokes, using the graphemes as a recognition unit is an efffective approach, because it naturally accommodates the structural characteristics of the characters. In this paper, we propose a grapheme-based on-line recognition method for cursive korean characters. Our method uses a TDNN recognition engine to segment cursive strokes into graphemes and a graph-algorithmic postprocessor based on korean grapheme composition rule and viterbi search algorithm to find the best recognition score path. We experimented the method on freely hand-written charactes and obtained a recognition rate of 94.5%.

  • PDF

A Study on Speech Recognition by One Stage MSVQ/DP (One stage MSVQ/DP를 이용한 음성 인식에 관한연구)

  • Jeoung, Eui-Bung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.5-12
    • /
    • 1994
  • This paper proposes One Stage MSVQ/DP method for word recognition system university administration branch names are selected for the recognition experiment and 10 LPC cepstrum coefficients is used as the feature parameter. Besides the speech recognition experiments by proposed method, for comparision with it, we perform the experiments on the same data by Level Building DTW and One Stage DP method. The Recognition rates with the LBDTW and the One Stage method are $83.3\%$ and $87.5\%$, but the recognition rate with the proposed method is $91.6\%$.

  • PDF

A Modified Viterbi Algorithm for Word Boundary Detection Error Compensation (단어 경계 검출 오류 보정을 위한 수정된 비터비 알고리즘)

  • Chung, Hoon;Chung, Ik-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1E
    • /
    • pp.21-26
    • /
    • 2007
  • In this paper, we propose a modified Viterbi algorithm to compensate for endpoint detection error during the decoding phase of an isolated word recognition task. Since the conventional Viterbi algorithm explores only the search space whose boundaries are fixed to the endpoints of the segmented utterance by the endpoint detector, the recognition performance is highly dependent on the accuracy level of endpoint detection. Inaccurately segmented word boundaries lead directly to recognition error. In order to relax the degradation of recognition accuracy due to endpoint detection error, we describe an unconstrained search of word boundaries and present an algorithm to explore the search space with efficiency. The proposed algorithm was evaluated by performing a variety of simulated endpoint detection error cases on an isolated word recognition task. The proposed algorithm reduced the Word Error Rate (WER) considerably, from 84.4% to 10.6%, while consuming only a little more computation power.

Neural Network Design for Spatio-temporal Pattern Recognition (시공간패턴인식 신경회로망의 설계)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF

Presentation Attacks in Palmprint Recognition Systems

  • Sun, Yue;Wang, Changkun
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.103-112
    • /
    • 2022
  • Background: A presentation attack places the printed image or displayed video at the front of the sensor to deceive the biometric recognition system. Usually, presentation attackers steal a genuine user's biometric image and use it for presentation attack. In recent years, reconstruction attack and adversarial attack can generate high-quality fake images, and have high attack success rates. However, their attack rates degrade remarkably after image shooting. Methods: In order to comprehensively analyze the threat of presentation attack to palmprint recognition system, this paper makes six palmprint presentation attack datasets. The datasets were tested on texture coding-based recognition methods and deep learning-based recognition methods. Results and conclusion: The experimental results show that the presentation attack caused by the leakage of the original image has a high success rate and a great threat; while the success rates of reconstruction attack and adversarial attack decrease significantly.

Region of Interest Extraction and Bilinear Interpolation Application for Preprocessing of Lipreading Systems (입 모양 인식 시스템 전처리를 위한 관심 영역 추출과 이중 선형 보간법 적용)

  • Jae Hyeok Han;Yong Ki Kim;Mi Hye Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.189-198
    • /
    • 2024
  • Lipreading is one of the important parts of speech recognition, and several studies have been conducted to improve the performance of lipreading in lipreading systems for speech recognition. Recent studies have used method to modify the model architecture of lipreading system to improve recognition performance. Unlike previous research that improve recognition performance by modifying model architecture, we aim to improve recognition performance without any change in model architecture. In order to improve the recognition performance without modifying the model architecture, we refer to the cues used in human lipreading and set other regions such as chin and cheeks as regions of interest along with the lip region, which is the existing region of interest of lipreading systems, and compare the recognition rate of each region of interest to propose the highest performing region of interest In addition, assuming that the difference in normalization results caused by the difference in interpolation method during the process of normalizing the size of the region of interest affects the recognition performance, we interpolate the same region of interest using nearest neighbor interpolation, bilinear interpolation, and bicubic interpolation, and compare the recognition rate of each interpolation method to propose the best performing interpolation method. Each region of interest was detected by training an object detection neural network, and dynamic time warping templates were generated by normalizing each region of interest, extracting and combining features, and mapping the dimensionality reduction of the combined features into a low-dimensional space. The recognition rate was evaluated by comparing the distance between the generated dynamic time warping templates and the data mapped to the low-dimensional space. In the comparison of regions of interest, the result of the region of interest containing only the lip region showed an average recognition rate of 97.36%, which is 3.44% higher than the average recognition rate of 93.92% in the previous study, and in the comparison of interpolation methods, the bilinear interpolation method performed 97.36%, which is 14.65% higher than the nearest neighbor interpolation method and 5.55% higher than the bicubic interpolation method. The code used in this study can be found a https://github.com/haraisi2/Lipreading-Systems.

Agent's Activities based Intention Recognition Computing (에이전트 행동에 기반한 의도 인식 컴퓨팅)

  • Kim, Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2012
  • Understanding agent's intent is an essential component of the human-computer interaction of ubiquitous computing. Because correct inference of subject's intention in ubiquitous computing system helps particularly to understand situations that involve collaboration among multiple agents or detection of situations that can pose a particular activity. This paper, inspired by people have a mechanism for interpreting one another's actions and for inferring the intentions and goals that underlie action, proposes an approach that allows a computing system to quickly recognize the intent of agents based on experience data acquired through prior capabilities of activities recognition. To proceed intention recognition, proposed method uses formulations of Hidden Markov Models (HMM) to model a system's prior experience and agents' action change, then makes for system infer intents in advance before the agent's actions are finalized while taking the perspective of the agent whose intent should be recognized. Quantitative validation of experimental results, while presenting an accurate rate, an early detection rate and a correct duration rate with detecting the intent of several people performing various activities, shows that proposed research contributes to implement effective intent recognition system.