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Abstract

m this paper, we propose a modified Viterbi algori나un to compensate for endpoint detection error during the decoding 

phase of an isolated word recognition task. Since the conventional Viterbi algorithm explores only the search space 

whose boundaries are fixed to the endpoints of the segmented utterance by the endpoint detector, the recognition 

performance i동 highly dependent on the accuracy level of endpoint detection. Inaccurately segmented word boundaries 

lead directly to recognition error. In order to relax the degradation of recognition accuracy due to endpoint detection 

error, we describe an 니nconstrained search of word boundaries and present an algori나im to explore the search space 

with efficiency. The proposed algorithm was evaluated by performing a variety of simulated endpoint detection error 

cases on an isolated word recognition task. The proposed algorithm reduced the Word Error Rate (WER) considerably, 

什om 84.4% to 10.6%, while consuming only a little more computation power.
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I. Introduction

From a practical point of view, one of the most critical 

factors that affects recognition performance of an isolated 

word recognition task is the level of endpoint detection 

accuracy. This is because the boundaries of the search 

space to be explored to find the most probable word for 

the given acoustic observations are fixed to the endpoints 

of the segmented utterance by so-called endpoint constraint. 

Therefore, inaccurately endpoint-detected utterances 

cannot h시p leading to recognition errors. There have been 

many approaches to address the endpoint detection problem. 

These approaches can be classified into two categories： 

one tries to segment word boundaries as accurately as 

possible for variations in the surrounding environment by 

using noise adaptation techniques and/or statistically
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different information between speech and the non-speech 

signal the other uses acoustic filler models to

absorb non-speech signals under a keyword-spotting 

framework [3] [4]. Both methods have in common that 

prior knowledge of the noise or non—speech signal is 

required to classify the non-speech signal. In other 

words, detection accuracy can deteriorate when unexpected 

noise sources occur. In this paper, we will present a 

different approach. The goal of the proposed method is to 

explore the word boundary unconstrained search space to 

compensate for endpoint detection errors without any 

prior information about the noise or non-speech signal. 

The remainder of this paper is organized as follows： In 

Section II, we describe the basic idea of the word 

boundary unconstrained search to compensate for endpoint 

detection error in the decoding phase. In Section III, the 

conventional Viterbi decoding algorithm is reviewed 

briefly. In Section IV, we present the modified Viterbi 

algorithm, which explores the search space with efficiency 
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in a time - synchronous fashion. In the last Section, we 

present recognition experiments performed on simulated 

endpoint detection error conditions.

II. The Word Boundary Unconstrained Search

The basic idea of word boundary unconstrained search 

to compensate for endpoint detection error is simple. 

Since it cannot be guaranteed that word boundaries are 

segmented accurately by the endpoint detector, instead of 

fixing the boundaries of the search space to the endpoints 

of a segmented utterance we assume that the correct 

word boundaries should be within the predefined start and 

end boundary margins and try to explore the search space 

iteratively by varying the word boundaries. Fi응. 1 

illustrates an example of the word boundary unconstrained 

search process.

In Fig. 1, NS represents the non-speech signal detected 

as speech due to endpoint detection error. Assuming that 

the start boundary margin is the first 6 frames and the 

end boundary margin is the last 8 frames, there is a total 

number of 48 possible word boundaries； the same number 

of Viterbi decoding algorithms should be performed on 

these distinct segments to get the best word, which 

produces maximum a posterior (MAP) probability 

normalized with the length of each segment. Even though 

this exhaustive search process works well, as expected, 

for adverse endpoint detection conditions, in practice it is

Fig. 1. An example of word boundary unconstrained search for an 
inaccurately segmented utterance.

hard to use due to the huge computational needs and 

frame -asynchronous characteristics. So, we present a 

modified algorithm, which explores the word boundary 

unconstrained search space very efficiently in a frame- 

synchronous manner.

III. 까】e Viterbi Algorithm

In this section, we briefly discuss the conventional 

Viterbi algorithm and how the conventional Viterbi 

algorithm can be converted to explore the word boundary 

unconstrained search space. The Viterbi algorithm is a DP 

algorithm, which finds the optimal state sequence that 

maximizes a posterior probability for a given Hidden 

Markov Model (HMM)九={勿,九切 and acoustic 

observations X = {x^x2,...,xT} by defining a variable 泌⑴ 

[5].

*(')= max P(0i，02,… ,七一1，七=，,羽丨“) 
gi，02，“w-i

=conditional probability that the word A produces 
the acoustic observaticms xY ,x2v.xt_x ⑴

The optimal state likelihood is then calculated by the 

Viterbi algorithm as

1. Initialization:

=丸t \<i<N

2. Recursion:

戸 (/) = maxW (?) •이J，bj (xt), \<ij < N,2 <t<T

3. Tennination:
尸* =argmax0「(/)} ⑵

As expressed in (2), the initialization and termination 

steps limit the boundaries of the search space to the first 

frame t = 1 and the last frame t = T. By relaxing this 

endpoint constraint, we can achieve word boundary 

unconstrained search.

IV. 까)e Modified Viterbi algorithm

As a result of relaxing the endpoint constraint, there 
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should be the number of hypothetical word boundaries, the 

product of the start boundary margins and the end 

boundary margins, and it takes time nearly proportional to 

the number of possible word boundaries to explore the 

search space iteratively with the conventional Viterbi 

algorithm. Hence, in order to reduce the computational 

loads of this exhaustive search with the conventional 

Viterbi algorithm, we will describe some modifications to 

the conventional Viterbi algorithm in this Section.

4.1. Start Point Unconstraint
As depicted in Fig. 2, there is the same number of 

partial hypotheses arriving to state i at time t as the 

number of start boundary margins, Each hypothesis can be 

expressed in terms of the variable introduced in the 

time conditioned approach [6][7].

W«)= max 尹01也，…，％一I，幻=i，气，Si，...,呵 在 U) f、

where 毎⑴ denotes conditional probability that a 

given HMM 人 produces the partial acoustic observation 

s•다 that starts from time t and ends at time t. In a 

maximum approximation point of view, there is only one 

hypothesis arriving to state/at time t. Hence, (1) can be 

expressed in terms of 4(0 if is properly normalized 

with respect to time.

Fig. 2. Partial hypotheses arriving to state t at time t starting from 
different start points.

泌(/) = max{衫⑺},私(/) = S(z)£(Z)

£ (4丿

where 하。) is the normalized likelihood as if it started 

from time r = l by normalization weight 0(丁).

Since Viterbi decoding is the process to find the optimal 

state sequence, it is reasonable to make the assumption 

that a newly starting hypothesis with state i from time t 

has made the transition from the state with the maximum 

likelihood at the previous time r-1. We can define the 

normalization weight。(了)as follows：

where Db denotes the start boundary margin and。(丁) 

means the maximum likelihood at time r-1. Since most 

speech recognizers use the beam pruning technique to kill 

unlik신y hypotheses compared to the most probable 

hypothesis, the normalization weight。(丁)can be obtained 

without more computational load and the normalization can 

be performed in time-synchronous fashion.

4.2. End Point Unconstraint
The endpoint unconstraint can be achieved by extending 

the termination region from t = T to endpoint boundary 

margin T-De<t<T t Similar to the unconstrained start 

point case, there are many terminating hypotheses 

representing different lengths of acoustic observations, 

and we normalize the likelihood score as follows：

尸*=max(0%))s|

，I 丿 (b)

Unlike the start point unconstraint case, the normalization 

in the termination step does not affect time-synchronous 

processing. So, we can simply normalize the likelihood 

scores with respect to time. Fig. 3 illustrates the 

normalization process and weights.

In Fig. 3, newly starting hypothesis from time T is 

normalized by 如")and terminating hypothesis is 

normalized with respect to time.

A Modified Viterbi Algorithm for Word Boundary Detection 타ror Compensation 23



states

algorithm.

4.3. Modified Viterbi Algorithm
We have mod迁ied the initialization and termination steps 

of the conventional Viterbi algorithm to accomplish 

unconstrained word boundary search efficiently. By 

replacing these two steps with the modified ones and 

inducing the recursion step as follows, we can obtain the 

modified Viterbi algorithm.

1 Jnitializa tion :

(0 =兀 i -。⑺•如(糸)，i<i<N,l<r<Db

2.Recursion :
5； O') = m：x(号(z) . ay ). bj (xt), 2<t<T, 1 < z, j <N 

泌(力=

3.Termination : (7)

P* = max*%))"'] T -De <t <T

where A and De denote word boundary margins within 

which we assume that correct word boundaries exist. As 

can be seen in (7), the conventional Viterbi algorithm can 

be converted to the proposed Viterbi algorithm with minor 

modifications in the initialization and termination steps.

V. Experiment And Results

In order to evaluate the performance of the proposed 

Viterbi decoding algorithm in a variety of endpoint 

detection error conditions, we defined a function that 

simulates these cases.

epd(t, nb,db,pb,ne,de,pe,S) =

nb (0 • Rect(/,1,db) + w(f) - Rect«,c",儿)+ $(')- Rect«, db^pbiT) +

w(t) - Rect(Z, db+ pb +T,pe) + ne (/) - Rect(/> 야 + 力 + 丁 + 儿 4)，

< t < s + d
Rect(" s, d) =〈 (8)

others

where %G) and ne{t) denote the non-speech signal, 

4 and < are the non-speech signal durations, Pb 

and % are pause durations, 训7) is white Gaussian 

noise with zero mean and unit variance, and S(r) denotes 

an accurately segmented utterance. Fig. 4 depicts the 

meaning of the variables of function a서G勺，，由，.

Fig. 4. General example of an inaccurately endpoint-detected 니tterance.

We prepared ten kinds of non-speech signals to simulate 

endpoint detection error cases caused by various 

non-speech signals such as musical noise, barking sounds, 

the ringing of a telephone, a baby crying, the sound of a 

door closing, laughing sounds, keyboard noise, wind noise, 

the sound of an air conditioner, and water sounds. We 

allowed the non-speech signal to last from 0 ms to 1000 

ms and the pause silence from 100 ms to 500 ms. The 

proposed algorithm was tested on an isolated word 

recognition task in which the active vocabulary consisted 

of 1130 phonetically balanced Korean words and correctly 

segmented 2260 utterances composed of two sets spoken 

by twenty-one people. We generated 2260 corresponding 

endpoint detection error utter 거 aces using the 

epd(t,nb,db,pb,ne,de,pe,S) function where all variables 

except speech S are assumed to have equal occurrence 

distribution. We used the tied-state triphone model of 

1860 states in which each state was represented by a 

Gaussian mixture comprised of 12 Gaussians components. 

We extracted MFCCs, CO energy, and their delta, leading 

to 26 features. The experiment was performed by varying 

word boundary margins Db and De as below.
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Db=T - Word boundary margin ratio

De=T-(T ■ Word boundary margin ratio) (9)

where T is the total frame number of a utterance. Fig. 

5 아｝ows the Word Error Rate (WER) of the inaccurately 

endpoint-detected (EPD) utterances as well as the 

accurately segmented utterances. It can be seen that the 

modified Viterbi algorithm reduces the WER of the 

inaccurately endpoint-detected utterances considerably. 

The WER is reduced from 84.39% to 10.6% when 

extending the word boundaries margin by 30% for both 

sides, while the recognition accuracy degrades very little 

for the accurately segmented utterances. This means that 

the recognition performance for the accurately segmented 

utterance is little affected by adopting the proposed 

Viterbi algorithm.

Fig. 6 shows the additional computation loads required 

by the proposed Viterbi algorithm. The computation is 

measured by a real-time factor. It is defined as the 

division of the total recognition time by the total time of 

the speech utterances on a 2.7GHz Pentium 4 workstation.
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Fig. 5. Recognition performance of the proposed Viterbi algorithm.
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As can be seen m Fig. 6, the modified Viterbi algorithm 

takes computation time nearly proportional to the word 

boundary margin. This computational load is relatively low 

in comparison with the exhaustive search using the 

conventional Viterbi algorithm. If we perform the 

conventional Viterbi algorithm iteratively for all assumed 

endpoints of a given word boundary margin, it takes time 

proportional to the square of the number of word boundary 

margin frames. In the mean while, it takes more time to 

explore the word boundary unconstrained search space of 

an inaccurately endpoint-detected utterance than the 

search space of an accurately endpoint-detected utterance 

for the same word boundary margin. This is because 

non-speech signals make more sub-word models to be 

survived.

VI. Conclusion

In this paper, we describe word boundary unconstrained 

search to compensate for endpoint detection error on 

isolated word recognition and present its efficient 

implementation. The modified Viterbi algorithm achieved 

considerable reduction of the WER (from 84.4% to 

10.6%) in a variety of simulated endpoint detection error 

cases while maintaining almost the same level of accuracy 

on the accurately segmented utterances. The conventional 

Viterbi algorithm can be easily converted to the proposed 

algorithm with minor modifications for the initialization 

and termination steps. In a sense, the conventional Viterbi 

algorithm can be regarded as a special case of the 

proposed algorithm where the word boundary margin is 

fixed to the endpoints of an utterance.
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