• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.027 seconds

A Study on the Text-Independent Speaker Recognition from the Vowel Extraction (모음 검출을 통한 텍스트 독립 화자인식에 관한 연구)

  • 김에녹;복혁규;김형래
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.82-91
    • /
    • 1994
  • In this thesis, we perform the experiment of speaker recognition by identifying vowels in the pronounciation of each speaker. In detail, we extract the vowels from the pronounciation of each speaker first. From it, we check the frequency energgy of 29 channels. After changing these into fuzzy values, we employ the fuzzy inference to recognize the speaker by text-dependent and text-independent methods. For this experiment, an algorithm of extracting vowels is developed, and newly introduced parameter is the frequency energy of the 29 channels computed from the extracted vowels. It shows the features of each speakers better than existing parameters. The advanced point of this paramter is to use the reference pattern only without the help of any codebook. As a rewult, test-dependent method showed about 95.5% rate of recognition, and text-independent method showed about 94.2% rate of recognition.

  • PDF

The Influence of Job Satisfaction Factors on Turnover of Marine Sports Employees (해양스포츠 종사자의 직장생활에서의 만족요인이 이직에 미치는 영향)

  • Ji, Sam-Up;Kim, Tae-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.4
    • /
    • pp.797-807
    • /
    • 2014
  • The purpose of this research is to clarify the influence of job satisfaction factors on the turnover of marine sports employees and propose the methodical and scientific preliminary data suggesting the development of marine sports and policy direction. To achieve this research was conducted on 247 marine sports workers from February to March, 2013 and the findings are shown below. Firstly, male workers showed higher satisfaction rate in social recognition and salary. Female workers showed higher satisfaction in work conditions. Married workers with related license holders negative in promotion, but workers who are 50 and older with high school diploma showed higher satisfaction. Secondly, group of singles showed higher satisfaction rate in social recognition and peer relationship. People with related majors showed higher satisfaction in suitability, salary, peer relationship and social recognition. Thirdly, those who show higher satisfaction in social recognition, work condition, salary, suitability, and promotion are show a lower likelihood of changing their job.

Performance of Pseudomorpheme-Based Speech Recognition Units Obtained by Unsupervised Segmentation and Merging (비교사 분할 및 병합으로 구한 의사형태소 음성인식 단위의 성능)

  • Bang, Jeong-Uk;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • This paper proposes a new method to determine the recognition units for large vocabulary continuous speech recognition (LVCSR) in Korean by applying unsupervised segmentation and merging. In the proposed method, a text sentence is segmented into morphemes and position information is added to morphemes. Then submorpheme units are obtained by splitting the morpheme units through the maximization of posterior probability terms. The posterior probability terms are computed from the morpheme frequency distribution, the morpheme length distribution, and the morpheme frequency-of-frequency distribution. Finally, the recognition units are obtained by sequentially merging the submorpheme pair with the highest frequency. Computer experiments are conducted using a Korean LVCSR with a 100k word vocabulary and a trigram language model obtained by a 300 million eojeol (word phrase) corpus. The proposed method is shown to reduce the out-of-vocabulary rate to 1.8% and reduce the syllable error rate relatively by 14.0%.

Voice Recognition Module for Multi-functional Electric Wheelchair (다기능 전동휠체어의 음성인식 모듈에 관한 연구)

  • 류홍석;김정훈;강성인;강재명;이상배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.83-86
    • /
    • 2002
  • This paper intends to provide convenience to the disabled, losing the use of their limbs, through voice recognition technology. The voice recognition part of this system recognizes voice by DTW (Dynamic Time Warping) Which is most Widely used in Speaker dependent system. Specially, S/N rate was improved through Wiener filter in the pre-treatment phase while considering real environmental conditions; the result values of 12th order feature pattern per frame are extracted by DTW algorithm using LPC and Cepsturm in feature extraction process. Furthermore, miniaturization is pursued using TMS320C32, 71's the floating-point DSP, for the hardware part. Currently, 90% of hardware porting has been completed, but we can confirm that the recognition rate was 96% as a result of performing the DTW algorithm in PC.

  • PDF

Pose-invariant Face Recognition using Cylindrical Model and Stereo Camera (원통 모델과 스테레오 카메라를 이용한 포즈 변화에 강인한 얼굴인식)

  • ;;David Han
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2012-2015
    • /
    • 2003
  • This paper proposes a pose-invariant face recognition method using cylindrical model and stereo camera. We divided this paper into two parts. One is single input image case, the other is stereo input image case. In single input image case, we normalized a face's yaw pose using cylindrical model, and in stereo input image case, we normalized a face's pitch pose using cylindrical model with estimated object's pitch pose by stereo geometry. Also, since we have advantage that we can utilize two images acquired at the same time, we can increase overall recognition rate by decision-level fusion. By experiment, we confirmed that recognition rate could be increased using our methods.

  • PDF

Character Segmentation and Recognition Algorithm for Steel Manufacturing Process Automation (슬라브 제품 정보 인식을 위한 문자 분리 및 문자 인식 알고리즘 개발)

  • Choi, Sung-Hoo;Yun, Jong-Pil;Park, Young-Su;Park, Jee-Hoon;Koo, Keun-Hwi;Kim, Sang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.389-391
    • /
    • 2007
  • This paper describes about the printed character segmentation and recognition system for slabs in steel manufacturing process. To increase the recognition rate, it is important to improve success rate of character segmentation. Since Slabs front area surface are not uniform and surface temperature is very high, marked characters not only undergo damages but also have much noise. On the other hand, since almost marked characters are very thick and the space between characters is only about 10 $^{\sim}$ 15 mm, there are many touching characters. Therefore appropriate character image preprocessing and segmentation algorithm is needed. In this paper we propose a multi-local thresholding method for damaged character restoration, a modified touching character segmentation, algorithm for marked characters. Finally a effective Multi-Class SVM is used to recognize segmented characters.

  • PDF

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

A Study on the Word Recognition of Korean Speech using Neural Network- A study on the initial consonant Recognition using composite Neural Network (신경망을 이용한 우리말 음성의 인식에 관한 연구 - 복합 신경망을 이용한 초성자음 인식에 관한 연구)

  • Kim, Suk-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.14-24
    • /
    • 1992
  • This paper is a study on the consonant recognition using neural network. First, the part of consonant was separated from the sound of vowel and consonant by the use of acoustic parameter. The rate of length vs. zero crossing rate in the sound of consonant had been studied by dividing each consonant into several groups. Finally, for the purpose of consonant recognition, the composite neural network which consists of a control network and several sub-network is proposed. The control network identifies the group to which the input consonant belongs and the sub-network recognizes the consonant in each group.

  • PDF

Isolated Word Recognition By HMM using Multisection MSVQ (MSVQ를 이용한 HMM에 의한 단독어 인식)

  • 안태옥;변용규;김순협
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1468-1475
    • /
    • 1990
  • In this paper, isolated words are recognized using multisection VQ and HMM. As recognition vocabuaries, 20 area-name which is uttered 5 times by 3 speakers is selected. In generating codebook, we devide recognition vocabulary into equal length, section, and make standard VQ codebook to each section and calculate observation by section and than recognize isolated words by HMM training. Multisection VQ codebook has time information and as observation is calculated by eacy section, computation is lesser and recongnition rate is higher than by whole codword. As a result, it is proved that recognition rate is higher in case of HMM using multisection VQ codebook.

  • PDF

Isolated word recognition using the SOFM-HMM and the Inertia (관성과 SOFM-HMM을 이용한 고립단어 인식)

  • 윤석현;정광우;홍광석;박병철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.17-24
    • /
    • 1994
  • This paper is a study on Korean word recognition and suggest the method that stabilizes the state-transition in the HMM by applying the `inertia' to the feature vector sequences. In order to reduce the quantized distortion considering probability distribution of input vectors, we used SOFM, an unsupervised learning method, as a vector quantizer, By applying inertia to the feature vector sequences, the overlapping of probability distributions for the response path of each word on the self organizing feature map can be reduced and the state-transition in the Hmm can be Stabilized. In order to evaluate the performance of the method, we carried out experiments for 50 DDD area names. The results showed that applying inertia to the feature vector sequence improved the recognition rate by 7.4% and can make more HMMs available without reducing the recognition rate for the SOFM having the fixed number of neuron.

  • PDF