• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

Number Recognition Using Accelerometer of Smartphone (스마트폰 가속도 센서를 이용한 숫자인식)

  • Bae, Seok-Chan;Kang, Bo-Gyung
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2011
  • In this Paper, we suggest the effective pre-correction algorithm on sensor values and the classification algorithm for gesture recognition that use values for each axis of the accelerometer to send data(a number or specific input data) to device. we know that creation of reliable preprocessed data in experimental results through the error rate of X-Axis and Y-Axis for pre-correction and post-correction. we can show high recognition rate through recognizer using the normalization and classification algorithm for the preprocessed data.

  • PDF

Development of a Door System by Speaker Verification Using Weighted Cepstrum and Single Average Pattern

  • Kyung, Youn-Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.60-68
    • /
    • 1996
  • In this paper, we implement the door lock system based on pattern matching technique for speaker recognition using DTW. In this study, major features of our system are summarized as follows:(1) Make the average reference pattern using DTW. This method keeps the high recognition rate compared with the other systems whose performances degrade rapidly as time goes on. (2) Use F-ratio values of the cepstral coefficients. We find that the weighted cepstral reveals an effect on intensifying the difference between th customer and the imposter. The system hardware is composed of two parts : the door lock part and the speaker recognition processing part. We use an 8051 microprocessor in the door lock park for serial communication with host processor to open or close the lock. Using our system, we obtain speaker recognition rate of about 99.5%.

  • PDF

A variation of face recognition rate according to the reduction of low dimension in PCA method (PCA 저차원 축소에 따른 조명 있는 얼굴의 인식률 변화)

  • Song, Young-Jun;Kim, Dong-Woo;Kim, Young-Gil;Kim, Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.533-535
    • /
    • 2006
  • In this paper, we experiment a face recognition rate of the shaded faces except to low dimension feature vectors; first, second, third dimension. It is known to robust the face recognition against illumination. But, it isn't obvious what is effect to recognition in terms of low dimension. We are analysis to the effect of low dimension(first, second, third dimension, and combination of these) under the shaded faces.

  • PDF

Performance Evaluation of English Word Pronunciation Correction System (한국인을 위한 외국어 발음 교정 시스템의 개발 및 성능 평가)

  • Kim Mu Jung;Kim Hyo Sook;Kim Sun Ju;Kim Byoung Gi;Ha Jin-Young;Kwon Chul Hong
    • MALSORI
    • /
    • no.46
    • /
    • pp.87-102
    • /
    • 2003
  • In this paper, we present an English pronunciation correction system for Korean speakers and show some of experimental results on it. The aim of the system is to detect mispronounced phonemes in spoken words and to give appropriate correction comments to users. There are several English pronunciation correction systems adopting speech recognition technology, however, most of them use conventional speech recognition engines. From this reason, they could not give phoneme based correction comments to users. In our system, we build two kinds of phoneme models: standard native speaker models and Korean's error models. We also design recognition network based on phonemes to detect Koreans' common mispronunciations. We get 90% detection rate in insertion/deletion/replacement of phonemes, but we cannot get high detection rate in diphthong split and accents.

  • PDF

A Study on Noisy Speech Recognition Using Discriminative Training for PMC Algorithm (PMC 방식에서의 분별적 학습을 이용한 잡음 음성인식에 관한 연구)

  • 정용주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.83-89
    • /
    • 2000
  • In this paper, we proposed a discriminative adaptation method for PMC algorithm and achieved improved speech recognition rate. For the adaptation, we adopted modified PMC(MPMC) which is a variant of PMC and discriminatively adapted the association factor for each mixture of the HMM in the MPMC. From the recognition experiments, the proposed method showed better recognition rate than the conventional PMC. Also, compared with STAR algorithm which is another model parameter compensation method, the proposed method showed superior performance when the SNR is very low and the adaptation data is not sufficient.

  • PDF

A Human Action Recognition Scheme in Temporal Spatial Data for Intelligent Web Browser

  • Cho, Kyung-Eun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.844-855
    • /
    • 2005
  • This paper proposes a human action recognition scheme for Intelligent Web Browser. Based on the principle that a human action can be defined as a combination of multiple articulation movements, the inference of stochastic grammars is applied to recognize each action. Human actions in 3 dimensional (3D) world coordinate are measured, quantized and made into two sets of 4-chain-code for xy and zy projection planes, consequently they are appropriate for applying the stochastic grammar inference method. We confirm this method by experiments, that various physical actions can be classified correctly against a set of real world 3D temporal data. The result revealed a comparatively successful achievement of $93.8\%$ recognition rate through the experiments of 8 movements of human head and $84.9\%$ recognition rate of 60 movements of human upper body. We expect that this scheme can be used for human-machine interaction commands in a web browser.

  • PDF

Recognition of Car Manufacturers using Faster R-CNN and Perspective Transformation

  • Ansari, Israfil;Lee, Yeunghak;Jeong, Yunju;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.888-896
    • /
    • 2018
  • In this paper, we report detection and recognition of vehicle logo from images captured from street CCTV. Image data includes both the front and rear view of the vehicles. The proposed method is a two-step process which combines image preprocessing and faster region-based convolutional neural network (R-CNN) for logo recognition. Without preprocessing, faster R-CNN accuracy is high only if the image quality is good. The proposed system is focusing on street CCTV camera where image quality is different from a front facing camera. Using perspective transformation the top view images are transformed into front view images. In this system, the detection and accuracy are much higher as compared to the existing algorithm. As a result of the experiment, on day data the detection and recognition rate is improved by 2% and night data, detection rate improved by 14%.

A Study on MLP Neural Network Architecture and Feature Extraction for Korean Syllable Recognition (한국어 음절 인식을 위한 MLP 신경망 구조 및 특징 추출에 관한 연구)

  • 금지수;이현수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.672-675
    • /
    • 1999
  • In this paper, we propose a MLP neural network architecture and feature extraction for Korean syllable recognition. In the proposed syllable recognition system, firstly onset is classified by onset classification neural network. And the results information of onset classification neural network are used for feature selection of imput patterns vector. The feature extraction of Korean syllables is based on sonority. Using the threshold rate separate the syllable. The results of separation are used for feature of onset. nucleus and coda. ETRI's SAMDORI has been used by speech DB. The recognition rate is 96% in the speaker dependent and 93.3% in the speaker independent.

  • PDF

Isolated Word Recognition Using a Speaker-Adaptive Neural Network (화자적응 신경망을 이용한 고립단어 인식)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.765-776
    • /
    • 1995
  • This paper describes a speaker adaptation method to improve the recognition performance of MLP(multiLayer Perceptron) based HMM(Hidden Markov Model) speech recognizer. In this method, we use lst-order linear transformation network to fit data of a new speaker to the MLP. Transformation parameters are adjusted by back-propagating classification error to the transformation network while leaving the MLP classifier fixed. The recognition system is based on semicontinuous HMM's which use the MLP as a fuzzy vector quantizer. The experimental results show that rapid speaker adaptation resulting in high recognition performance can be accomplished by this method. Namely, for supervised adaptation, the error rate is signifecantly reduced from 9.2% for the baseline system to 5.6% after speaker adaptation. And for unsupervised adaptation, the error rate is reduced to 5.1%, without any information from new speakers.

  • PDF