• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.03 seconds

A Personal Prescription Management System Employing Optical Character Recognition Technique (OCR 기반의 개인 처방전 관리 시스템)

  • Kim, Jae-wan;Kim, Sang-tae;Yoon, Jun-yong;Joo, Yang-Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2423-2428
    • /
    • 2015
  • We have implemented a personal prescription management system which enables resource-limited mobile device to utilize the optical character recognition technique. The system enables us to automatically detect and recognize the text in the personal prescription by using a optical character recognition technique. We improved the recognition rate over a pre-processing in order to improve the character recognition rate of the original method. The examples such as a personal prescription management service, alarm service, and drug information service with mobile devices have been demonstrated by using the our system.

Facial Feature Recognition based on ASNMF Method

  • Zhou, Jing;Wang, Tianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6028-6042
    • /
    • 2019
  • Since Sparse Nonnegative Matrix Factorization (SNMF) method can control the sparsity of the decomposed matrix, and then it can be adopted to control the sparsity of facial feature extraction and recognition. In order to improve the accuracy of SNMF method for facial feature recognition, new additive iterative rules based on the improved iterative step sizes are proposed to improve the SNMF method, and then the traditional multiplicative iterative rules of SNMF are transformed to additive iterative rules. Meanwhile, to further increase the sparsity of the basis matrix decomposed by the improved SNMF method, a threshold-sparse constraint is adopted to make the basis matrix to a zero-one matrix, which can further improve the accuracy of facial feature recognition. The improved SNMF method based on the additive iterative rules and threshold-sparse constraint is abbreviated as ASNMF, which is adopted to recognize the ORL and CK+ facial datasets, and achieved recognition rate of 96% and 100%, respectively. Meanwhile, from the results of the contrast experiments, it can be found that the recognition rate achieved by the ASNMF method is obviously higher than the basic NMF, traditional SNMF, convex nonnegative matrix factorization (CNMF) and Deep NMF.

Robot User Control System using Hand Gesture Recognizer (수신호 인식기를 이용한 로봇 사용자 제어 시스템)

  • Shon, Su-Won;Beh, Joung-Hoon;Yang, Cheol-Jong;Wang, Han;Ko, Han-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • This paper proposes a robot control human interface using Markov model (HMM) based hand signal recognizer. The command receiving humanoid robot sends webcam images to a client computer. The client computer then extracts the intended commanding hum n's hand motion descriptors. Upon the feature acquisition, the hand signal recognizer carries out the recognition procedure. The recognition result is then sent back to the robot for responsive actions. The system performance is evaluated by measuring the recognition of '48 hand signal set' which is created randomly using fundamental hand motion set. For isolated motion recognition, '48 hand signal set' shows 97.07% recognition rate while the 'baseline hand signal set' shows 92.4%. This result validates the proposed hand signal recognizer is indeed highly discernable. For the '48 hand signal set' connected motions, it shows 97.37% recognition rate. The relevant experiments demonstrate that the proposed system is promising for real world human-robot interface application.

Emotion Recognition Using Output Data of Image and Speech (영상과 음성의 출력 데이터를 이용한 감성 인식)

  • Joo, Young-Hoon;Oh, Jae-Heung;Park, Chang-Hyun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.275-280
    • /
    • 2003
  • In this paper, we propose a method for recognizing the human s emotion using output data of image and speech. The proposed method is based on the recognition rate of image and speech. In case that we use one data of image or speech, it is hard to produce the correct result by wrong recognition. To solve this problem, we propose the new method that can reduce the result of the wrong recognition by multiplying the emotion status with the higher recognition rate by the higher weight value. To experiment the proposed method, we suggest the simple recognizing method by using image and speech. Finally, we have shown the potentialities through the expriment.

Traffic Light and Speed Sign Recognition by using Hierarchical Application of Color Segmentation and Object Feature Information (색상분할 및 객체 특징정보의 계층적 적용에 의한 신호등 및 속도 표지판 인식)

  • Lee, Kang-Ho;Bang, Min-Young;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.207-214
    • /
    • 2010
  • A method of the region extraction and recognition of a traffic light and speed sign board in the real road environment is proposed. Traffic light was recognized by using brightness and color information based on HSI color model. Speed sign board was extracted by measuring red intensity from the HSI color information We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. The proposed algorithm shows a robust recognition rate in the image sequence which includes traffic light and speed sign board.

An evaluation of Korean students' pronunciation of an English passage by a speech recognition application and two human raters

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.19-25
    • /
    • 2020
  • This study examined thirty-one Korean students' pronunciation of an English passage using a speech recognition application, Speechnotes, and two Canadian raters' evaluations of their speech according to the International English Language Testing System (IELTS) band criteria to assess the possibility of using the application as a teaching aid for pronunciation education. The results showed that the grand average percentage of correctly recognized words was 77.7%. From the moderate recognition rate, the pronunciation level of the participants was construed as intermediate and higher. The recognition rate varied depending on the composition of the content words and the function words in each given sentence. Frequency counts of unrecognized words by group level and word type revealed the typical pronunciation problems of the participants, including fricatives and nasals. The IELTS bands chosen by the two native raters for the rainbow passage had a moderately high correlation with each other. A moderate correlation was reported between the number of correctly recognized content words and the raters' bands, while an almost a negligible correlation was found between the function words and the raters' bands. From these results, the author concludes that the speech recognition application could constitute a partial aid for diagnosing each individual's or the group's pronunciation problems, but further studies are still needed to match human raters.

Feature Variance and Adaptive classifier for Efficient Face Recognition (효과적인 얼굴 인식을 위한 특징 분포 및 적응적 인식기)

  • Dawadi, Pankaj Raj;Nam, Mi Young;Rhee, Phill Kyu
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.34-37
    • /
    • 2007
  • Face recognition is still a challenging problem in pattern recognition field which is affected by different factors such as facial expression, illumination, pose etc. The facial feature such as eyes, nose, and mouth constitute a complete face. Mouth feature of face is under the undesirable effect of facial expression as many factors contribute the low performance. We proposed a new approach for face recognition under facial expression applying two cascaded classifiers to improve recognition rate. All facial expression images are treated by general purpose classifier at first stage. All rejected images (applying threshold) are used for adaptation using GA for improvement in recognition rate. We apply Gabor Wavelet as a general classifier and Gabor wavelet with Genetic Algorithm for adaptation under expression variance to solve this issue. We have designed, implemented and demonstrated our proposed approach addressing this issue. FERET face image dataset have been chosen for training and testing and we have achieved a very good success.

Performance Improvement ofSpeech Recognition Based on SPLICEin Noisy Environments (SPLICE 방법에 기반한 잡음 환경에서의 음성 인식 성능 향상)

  • Kim, Jong-Hyeon;Song, Hwa-Jeon;Lee, Jong-Seok;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.53
    • /
    • pp.103-118
    • /
    • 2005
  • The performance of speech recognition system is degraded by mismatch between training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE) was introduced to overcome environmental mismatch using stereo data. In this paper, we propose several methods to improve the conventional SPLICE and evaluate them in the Aurora2 task. We generalize SPLICE to compensate for covariance matrix as well as mean vector in the feature space, and thereby yielding the error rate reduction of 48.93%. We also employ the weighted sum of correction vectors using posterior probabilities of all Gaussians, and the error rate reduction of 48.62% is achieved. With the combination of the above two methods, the error rate is reduced by 49.61% from the Aurora2 baseline system.

  • PDF

A Study on Speech Recognition using GAVQ(Genetic Algorithms Vector Quantization) (GAVQ를 이용한 음성인식에 관한 연구)

  • Lee, Sang-Hee;Lee, Jae-Kon;Jeong, Ho-Kyoun;Kim, Yong-Yun;Nam, Jae-Sung
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.209-216
    • /
    • 1999
  • In this paper, we proposed a modofied genetic algorithm to minimize misclassification rate for determining the codebook. Genetic algorithms are adaptive methods which may be used solve search and optimization problems based on the genetic processes of biological organisms. But they generally require a large amount of computation efforts. GAVQ can choose the optimal individuals by genetic operators. The position of individuals are optimized to improve the recognition rate. The technical properties of this study is that prevents us from the local minimum problem, which is not avoidable by conventional VQ algorithms. We compared the simulation result with Matlab using phoneme data. The simulation results show that the recognition rate from GAVQ is improved by comparing the conventional VQ algorithms.

  • PDF

역전파 학습 신경망을 이용한 고립 단어 인식시스템에 관한 연구

  • 김중태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.9
    • /
    • pp.738-744
    • /
    • 1990
  • This paper proposed a real-time memory storage method and an improved sample data method from given data of the speech signal, so, the isolated word recognition system using a back-propagation learning algorithm of the neural netwrok is studied. The recognition rate and the error rate are compared with the new sample data sets generated from small sets of given sample data by the node nunber variatiion of each layer. In this result, the recognition rate of 95.1% was achived.

  • PDF