• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.058 seconds

A comparison of deep-learning models to the forecast of the daily solar flare occurrence using various solar images

  • Shin, Seulki;Moon, Yong-Jae;Chu, Hyoungseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2017
  • As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT $195{\AA}$, and $304{\AA}$ from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We consider other input images which consist of last two images and their difference image. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the over-fitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). All statistical parameters do not strongly depend on the number of input data sets. Our model can immediately be applied to automatic forecasting service when image data are available.

  • PDF

Finger-Knuckle Print Recognition Using Gradient Orientation Feature (그레이디언트 방향 특징을 이용한 손가락 관절문 인식)

  • Kim, Min-Ki
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.517-523
    • /
    • 2012
  • Biometrics is a study of identifying individual by using the features of human body. It has been studied for an alternative or complementary method for the classical method based on password, ID card, etc. In comparison with the fingerprint, iris, ear, palmprint, finger-knuckle print has been recently studied. This paper proposes an effective method for recognizing finger-knuckle print based on the feature of Gradient orientation. The main features of finger-knuckle print are the size and direction of winkles. In order to extract these features stably, we make a feature vector consisted of Gradient orientations after the preprocessing of enhancing non-uniform brightness and low contrast. Total 790 images acquired from 158 persons have been used at the experiment for evaluating the performance of the proposed method. The experimental results show the recognition rate of 99.69% and the relatively high decidability index of 1.882. These results demonstrate that the proposed method is effective in recognizing finger-knuckle print.

Automatic Generation of Training Character Samples for OCR Systems

  • Le, Ha;Kim, Soo-Hyung;Na, In-Seop;Do, Yen;Park, Sang-Cheol;Jeong, Sun-Hwa
    • International Journal of Contents
    • /
    • v.8 no.3
    • /
    • pp.83-93
    • /
    • 2012
  • In this paper, we propose a novel method that automatically generates real character images to familiarize existing OCR systems with new fonts. At first, we generate synthetic character images using a simple degradation model. The synthetic data is used to train an OCR engine, and the trained OCR is used to recognize and label real character images that are segmented from ideal document images. Since the OCR engine is unable to recognize accurately all real character images, a substring matching method is employed to fix wrongly labeled characters by comparing two strings; one is the string grouped by recognized characters in an ideal document image, and the other is the ordered string of characters which we are considering to train and recognize. Based on our method, we build a system that automatically generates 2350 most common Korean and 117 alphanumeric characters from new fonts. The ideal document images used in the system are postal envelope images with characters printed in ascending order of their codes. The proposed system achieved a labeling accuracy of 99%. Therefore, we believe that our system is effective in facilitating the generation of numerous character samples to enhance the recognition rate of existing OCR systems for fonts that have never been trained.

Fatigue Crack Growth Behavior of and Recognition of AE Signals from Composite Patch-Repaired Aluminum Panel (복합재 패치로 보수된 알루미늄 패널의 피로균열 성장거동과 AE신호의 유형인식)

  • Kim, Sung-Jin;Kwon, Oh-Yang;Jang, Yong-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.48-57
    • /
    • 2007
  • The fatigue crack growth behavior of a cracked and patch-repaired Ah2024-T3 panel has been monitored by acoustic emission(AE). The overall crack growth rate was reduced The crack propagation into the adjacent hole was also retarded by introducing the patch repair. AE signals due to crack growth after the patch repair and those due to debonding of the plate-patch interface were discriminated by usiag the principal component analysis. The former showed high center frequency and low amplitude, whereas the latter showed long rise tine, low frequency and high amplitude. This type of AE signal recognition method could be effective for the prediction of fatigue crack growth behavior in the patch-repaired structures with the aid of AE source location.

A Study on Purchasing Behavior and Fit Satisfaction on the Direct Imported-U.S. Apparel Brand and Products - Focusing on Korean Female University Students in 20s - (미국 직수입 의류 브랜드와 제품에 대한 구매 행동과 맞음새 만족도 조사 - 20대 한국 여대생을 대상으로 -)

  • Choi, Sun-Yoon;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.6
    • /
    • pp.1127-1137
    • /
    • 2010
  • As directly imported apparel brands are actively entering the domestic market, studies of the marketing aspects of these imported apparel products and their overall consumption trend have been done. However, studies of whether are not the directly imported apparel products provide Korean consumers with an appropriate fit are not as common. Therefore, this study investigates the satisfaction with and problems associated with the fit along with the recognition of and preference for directly imported US apparel brands. 100 female college students who purchased directly imported US apparel brands participated in a survey. The results of this survey showed that their recognition of, preference for, possession rate of and satisfaction with the directly imported US apparel brands tend to be high. The major purchasing motivations were the excellent 'design' and 'color' of the products. The subjects reported that they were satisfied with the quality of 'materials' and 'sewing condition'. However, they were not satisfied with the 'comfort' or the 'size'. Their level of satisfaction with the fit of these products differed depending on the specific item. Their level of satisfaction with the fit of T-shirts and knits was high, whereas the level for pants was relatively low. They complained mostly about the sleeve length and garment length of upper-body garments and coats. They were not satisfied with how the pants fit. The areas of dissatisfaction regarding the pants were the waist girth, the crotch length and the pants length.

Phoneme Segmentation in Consideration of Speech feature in Korean Speech Recognition (한국어 음성인식에서 음성의 특성을 고려한 음소 경계 검출)

  • 서영완;송점동;이정현
    • Journal of Internet Computing and Services
    • /
    • v.2 no.1
    • /
    • pp.31-38
    • /
    • 2001
  • Speech database built of phonemes is significant in the studies of speech recognition, speech synthesis and analysis, Phoneme, consist of voiced sounds and unvoiced ones, Though there are many feature differences in voiced and unvoiced sounds, the traditional algorithms for detecting the boundary between phonemes do not reflect on them and determine the boundary between phonemes by comparing parameters of current frame with those of previous frame in time domain, In this paper, we propose the assort algorithm, which is based on a block and reflecting upon the feature differences between voiced and unvoiced sounds for phoneme segmentation, The assort algorithm uses the distance measure based upon MFCC(Mel-Frequency Cepstrum Coefficient) as a comparing spectrum measure, and uses the energy, zero crossing rate, spectral energy ratio, the formant frequency to separate voiced sounds from unvoiced sounds, N, the result of out experiment, the proposed system showed about 79 percents precision subject to the 3 or 4 syllables isolated words, and improved about 8 percents in the precision over the existing phonemes segmentation system.

  • PDF

Ambulatory System for Context Awareness Using a Accelerometer Sensor (가속도센서를 이용한 상황인식 시스템)

  • Jin Gye-Hwan;Lee Sang-Bock;Choi Hun;Suh Jae-Won;Bae Hyeon-Deok;Lee Tae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.287-295
    • /
    • 2005
  • This paper describes user context awareness system, which is one of the most essential technologies in various application services of ubiquitous computing. The proposed system used two-akial accelerometer, embedded in SenseWear(R)PRO2 Armband (BodyMedia). When it was worn on the right upper arm of the experiment subjects, MAD (mean of absolute difference) value of the sensor data was calculated to quantify the amount of the wear's activity. Using this data, PC-based fuzzy inference system was realized to distinguish human motion states, such as, lying, sitting, walking and running and to recognize the restricted emergency situations. In laboratory experiment, the amount of activities for tying, sitting, walking and running were 0.204 g/s, 0.373 g/s, 2.808 g/s and 16.243 g/s respectively. The recognition rates of human motion states were 96.7 %, 93.0 %, 95.2 % and 98.4 % respectively for lying, sitting, walking and running. The recognition rate of restricted emergency situation was 100%.

  • PDF

Hand Shape Detection and Recognition using Self Organized Feature Map(SOMF) and Principal Component Analysis (자기 조직화 특징 지도(SOFM)와 주성분 분석을 이용한 손 형상 검출 및 인식)

  • Kim, Kyoung-Ho;Lee, Kee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.11
    • /
    • pp.28-36
    • /
    • 2013
  • This study proposed a robust detection algorithm. It detects hands more stably with respect to changes in light and rotation for the identification of a hand shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the hand area through pre-processing using a hand shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a hand area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the hand shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

The Analysis and Recognition of Korean Speech Signal using the Phoneme (음소에 의한 한국어 음성의 분석과 인식)

  • Kim, Yeong-Il;Lee, Geon-Gi;Lee, Mun-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.38-47
    • /
    • 1987
  • As Korean language can be phonemically classified according to the characteristic and structure of its pronunciation, Korean syllables can be divided into the phonemes such as consonant and vowel. The divided phonemes are analyzed by using the method of partial autocorrelation, and the order of partial autocorelation coefficient is 15. In analysis, it is shown that each characteristic of the same consonants, vowels, and end consonant in syllables in similar. The experiments is carried out by dividing 675 syllables into consonants, vowels, and end consonants. The recognition rate of consonants, vowels, end-consonants, and syllables are $85.0(\%)$, $90.7(\%)$, $85.5(\%)$and $72.1(\%)$ respectively. In conclusion, it is shown that Korean syllables, divided by the phonemes, are analyzed and recognized with minimum data and short processing time. Furthermore, it is shown that Korean syllables, words and sentences are recognized in the same way.

  • PDF

Convolutional neural network based amphibian sound classification using covariance and modulogram (공분산과 모듈로그램을 이용한 콘볼루션 신경망 기반 양서류 울음소리 구별)

  • Ko, Kyungdeuk;Park, Sangwook;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-65
    • /
    • 2018
  • In this paper, a covariance matrix and modulogram are proposed for realizing amphibian sound classification using CNN (Convolutional Neural Network). First of all, a database is established by collecting amphibians sounds including endangered species in natural environment. In order to apply the database to CNN, it is necessary to standardize acoustic signals with different lengths. To standardize the acoustic signals, covariance matrix that gives distribution information and modulogram that contains the information about change over time are extracted and used as input to CNN. The experiment is conducted by varying the number of a convolutional layer and a fully-connected layer. For performance assessment, several conventional methods are considered representing various feature extraction and classification approaches. From the results, it is confirmed that convolutional layer has a greater impact on performance than the fully-connected layer. Also, the performance based on CNN shows attaining the highest recognition rate with 99.07 % among the considered methods.