• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.027 seconds

A Method for Improving Object Recognition Using Pattern Recognition Filtering (패턴인식 필터링을 적용한 물체인식 성능 향상 기법)

  • Park, JinLyul;Lee, SeungGi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.122-129
    • /
    • 2016
  • There have been a lot of researches on object recognition in computer vision. The SURF(Speeded Up Robust Features) algorithm based on feature detection is faster and more accurate than others. However, this algorithm has a shortcoming of making an error due to feature point mismatching when extracting feature points. In order to increase a success rate of object recognition, we have created an object recognition system based on SURF and RANSAC(Random Sample Consensus) algorithm and proposed the pattern recognition filtering. We have also presented experiment results relating to enhanced the success rate of object recognition.

Sensor Fusion System for Improving the Recognition Performance of 3D Object (3차원 물체의 인식 성능 향상을 위한 감각 융합 시스템)

  • Kim, Ji-Kyoung;Oh, Yeong-Jae;Chong, Kab-Sung;Wee, Jae-Woo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.107-109
    • /
    • 2004
  • In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile information. The proposed system focuses on improving recognition performance of 3D object. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse these informations. Tactual signals are obtained from the reaction force by the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of teaming iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though visual information has a defect. The experimental results show that the proposed system can improve recognition rate and reduce learning time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme of 3D object.

  • PDF

Object Recognition using Neural Network (신경회로망을 이용한 물체인식)

  • Kim, Hyoung-Geun;Park, Sung-Kyu;Song, Chull;Choi, Kap-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 1992
  • In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.

  • PDF

Design and Application of Vision Box Based on Embedded System (Embedded System 기반 Vision Box 설계와 적용)

  • Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1601-1607
    • /
    • 2009
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and automobile types recognition is one of them. There have been many research about algorithm of automobile types recognition. But have complex calculation processing. so they need long processing time. In this paper, we designed vision box based on embedded system. and suggested automobile types recognition system using the vision box. As a result of pretesting, this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting and angle, recognition is available but pattern score is lowered. Also, it is observed that the proposed system satisfy the criteria of processing time and recognition rate in industrial field.

A Study on the Recognition System of Faint Situation based on Bimodal Information (바이모달 정보를 이용한 기절상황인식 시스템에 관한 연구)

  • So, In-Mi;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.225-236
    • /
    • 2010
  • This study proposes a method for the recognition of emergency situation according to the bimodal information of camera image sensor and gravity sensor. This method can recognize emergency condition by mutual cooperation and compensation between sensors even when one of the sensors malfunction, the user does not carry gravity sensor, or in the place like bathroom where it is hard to acquire camera images. This paper implemented HMM(Hidden Markov Model) based learning and recognition algorithm to recognize actions such as walking, sitting on floor, sitting at sofa, lying and fainting motions. Recognition rate was enhanced when image feature vectors and gravity feature vectors are combined in learning and recognition process. Also, this method maintains high recognition rate by detecting moving object through adaptive background model even in various illumination changes.

Development of character recognition system for the mixed font style in the steel processing material

  • Lee, Jong-Hak;Park, Sang-Gug;Park, Soo-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1431-1434
    • /
    • 2005
  • In the steel production line, the molten metal of a furnace is transformed into billet and then moves to the heating furnace of the hot rolling mill. This paper describes about the development of recognition system for the characters, which was marked at the billet material by use template-marking plate and hand written method, in the steel plant. For the recognition of template-marked characters, we propose PSVM algorithm. And for the recognition of hand written character, we propose combination methods of CCD algorithm and PSVM algorithm. The PSVM algorithm need some more time than the conventional KLT or SVM algorithm. The CCD algorithm makes shorter classification time than the PSVM algorithm and good for the classification of closed curve characters from Arabic numerals. For the confirmation of algorithm, we have compared our algorithm with conventional methods such as KLT classifier and one-to-one SVM. The recognition rate of experimented billet characters shows that the proposing PSVM algorithm is 97 % for the template-marked characters and combinational algorithm of CCD & PSVM is 95.5 % for the hand written characters. The experimental results show that our proposing method has higher recognition rate than that of the conventional methods for the template-marked characters and hand written characters. By using our algorithm, we have installed real time character recognition system at the billet processing line of the steel-iron plant.

  • PDF

Speech Recognition Optimization Learning Model using HMM Feature Extraction In the Bhattacharyya Algorithm (바타차랴 알고리즘에서 HMM 특징 추출을 이용한 음성 인식 최적 학습 모델)

  • Oh, Sang-Yeob
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.199-204
    • /
    • 2013
  • Speech recognition system is shall be composed model of learning from the inaccurate input speech. Similar phoneme models to recognize, because it leads to the recognition rate decreases. Therefore, in this paper, we propose a method of speech recognition optimal learning model configuration using the Bhattacharyya algorithm. Based on feature of the phonemes, HMM feature extraction method was used for the phonemes in the training data. Similar learning model was recognized as a model of exact learning using the Bhattacharyya algorithm. Optimal learning model configuration using the Bhattacharyya algorithm. Recognition performance was evaluated. In this paper, the result of applying the proposed system showed a recognition rate of 98.7% in the speech recognition.

A Study on Speech Recognition based on Phoneme for Korean Subway Station Names (한국의 지하철역명을 위한 음소 기반의 음성인식에 관한 연구)

  • Kim, Beom-Seung;Kim, Soon-Hyob
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.228-233
    • /
    • 2011
  • This paper presented the method about the Implementation of Speech Recognition based on phoneme considering the phonological characteristic for Korean Subway Station Names. The Pronunciation dictionary considering PLU set and phonological variations with four Case in order to select the optimum PLU used for Speech Recognition based on phoneme for Korean Subway Station Names was comprised and the recognition rate was estimated. In the case of the applied PLU, we could know the optimum recognition rate(97.74%) be shown in the triphone model in case of considering the recognition unit division of the initial consonant and final consonant and phonological variations.

Neural Network Approach to Sensor Fusion System for Improving the Recognition Performance of 3D Objects (3차원 물체의 인식 성능 향상을 위한 감각 융합 신경망 시스템)

  • Dong Sung Soo;Lee Chong Ho;Kim Ji Kyoung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.156-165
    • /
    • 2005
  • Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.