• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.033 seconds

An Implementation of User Identification System Using Hrbrid Biomitic Distances (복합 생체 척도 거리를 이용한 사용자 인증시스템의 구현)

  • 주동현;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2002
  • In this paper we proposed the user identification system using hybrid biometric information and non-contact IC card to improve the accuracy of the system. The hybrid biometric information consists of the face image, the iris image, and the 4-digit voice password of user. And the non-contact IC card provides the base information of user If the distance between the sample hybrid biometric Information corresponding to the base information of user and the measured biometric information is less than the given threshold value, the identification is accepted. Otherwise it is rejected. Through the result of experimentation, this paper shows that the proposed method has better identification rate than the conventional identification method.

  • PDF

Design of Main Transformer Fault Restoration Strategy Based on Pattern Clustering Method in Automated Substation (패턴 클러스터링 기법에 기반한 배전 변전소 주변압기 사고복구 전략 설계)

  • Ko, Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.410-417
    • /
    • 2006
  • Generally, the training set of maximum $m{\times}L(m+f)$ patterns in the pattern recognition method is required for the real-time bus reconfiguration strategy when a main transformer fault occurs in the distribution substation. Accordingly, to make the application of pattern recognition method possible, the size of the training set must be reduced as efficient level. This Paper proposes a methodology which obtains the minimized training set by applying the pattern clustering method to load patterns of the main transformers and feeders during selected period and to obtain bus reconfiguration strategy based on it. The MaxMin distance clustering algorithm is adopted as the pattern clustering method. The proposed method reduces greatly the number of load patterns to be trained and obtain the satisfactory pattern matching success rate because that it generates the typical pattern clusters by appling the pattern clustering method to load patterns of the main transformers and feeders during selected period. The proposed strategy is designed and implemented in Visual C++ MFC. Finally, availability and accuracy of the proposed methodology and the design is verified from diversity simulation reviews for typical distribution substation.

Direction Recognition of Tongue through Pixel Distribution Estimation after Preprocessing Filtering (전처리 필터링 후 픽셀 분포 평가를 통한 혀 방향 인식)

  • Kim, Chang-dae;Lee, Jae-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.73-76
    • /
    • 2013
  • This paper proposes a tongue and its direction recognition algorithm which compares and estimates pixel distribution in the mouth area. As the size of smart phones grows, facial gesture control technology for a smart phone is required. Firstly, the nose area is detected and the mouth area is detected based on the ratio of the nose to mouth. After detecting the mouth area, it is divided by a pattern of grid and the distribution of pixels having the similar color to the tongue is tested for each segment. The recognition rate was nearly 80% in the experiments performed with five researchers among our laboratory members.

  • PDF

Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition (차량 규격과 특징 패턴을 이용한 자동차번호판 추출)

  • 이종석;남기환;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.596-599
    • /
    • 2001
  • Extracting of car licens plate is important for identifying the car. Since there are some problems such as poor ambient lighting problem, bad weather problem and so on, the car images we distorted and the tar license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method, some features of car license plate according to motor vehicle regulation such as color information, shape are applied to determine the candidate of car license plates. For the result of recognition by neural network, the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. The results of the experiments with 70 samples of real car images shoe the performance of car license-plate extraction by 84.29%, and the recognition rate is 80.81%.

  • PDF

Recognition of Off-line Handwritten Numerals using KL Transformation (KL변환에 의한 오프라인 필기체 숫자인식)

  • 박중조;김경민;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.912-915
    • /
    • 2002
  • This paper presents off-line handwritten numeral recognition method by using Eigen-Vectors. In this method, numeral features are extracted statistically by using Eigen-Vectors through KL transform and input numeral is recognized in the feature space by the nearest-neighbor classifier. In our feature extraction method, basis vectors which express best the property of each numeral type within the extensive database of sample numeral images are calculated, and the numeral features are obtained by using this basis vectors. Through the experiments with the unconstrained handwritten numeral database of Concordia University, we have achieved a recognition rate of 96.2%.

  • PDF

Development of user activity type and recognition technology using LSTM (LSTM을 이용한 사용자 활동유형 및 인식기술 개발)

  • Kim, Young-kyun;Kim, Won-jong;Lee, Seok-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.360-363
    • /
    • 2018
  • Human activity is influenced by various factors, from individual physical features such as vertebral flexion and pelvic distortion to feelings such as joy, anger, and sadness. However, the nature of these behaviors changes over time, and behavioral characteristics do not change much in the short term. The activity data of a person has a time series characteristic that changes with time and a certain regularity for each action. In this study, we applied LSTM, a kind of cyclic neural network to deal with time - series characteristics, to the technique of recognizing activity type and improved recognition rate of activity type by measuring time and parameter optimization of components of LSTM model.

  • PDF

Vision-based hand Gesture Detection and Tracking System (비전 기반의 손동작 검출 및 추적 시스템)

  • Park Ho-Sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1175-1180
    • /
    • 2005
  • We present a vision-based hand gesture detection and tracking system. Most conventional hand gesture recognition systems utilize a simpler method for hand detection such as background subtractions with assumed static observation conditions and those methods are not robust against camera motions, illumination changes, and so on. Therefore, we propose a statistical method to recognize and detect hand regions in images using geometrical structures. Also, Our hand tracking system employs multiple cameras to reduce occlusion problems and non-synchronous multiple observations enhance system scalability. In this experiment, the proposed method has recognition rate of $99.28\%$ that shows more improved $3.91\%$ than the conventional appearance method.

Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip (유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용)

  • Kim, Kyoung-Min;Lee, Byung-Jin;Lyou, Kyoung;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

A Study on an On-Line Handwritten Hangeul Character Recognition Using Fuzzy Inference (Fuzzy 推論을 이용한 온라인 筆記體 한글문자 認識에 관한 연구)

  • Choi, Yong-Yub;Choi, Kap-Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.103-110
    • /
    • 1990
  • This paper studies on an on-line recognition of handwritten Hangeul characters using the fuzzy inference. To solve the ambiguity due to the variations of writing style by writes, these handwri-tten characters are recognized by means of the fuzzy inference on the production rule which is generated with every relative position information between strokes. In order to reduce the processing time, a subgroup which is previously classified with the number of strokes of reference characters is selected according to the number of strokes of input character, and the tolerance limit of distances between input character and reference characters of a subgroup is introduced to reduce the reference characters which is applied to the fuzzy inference. Experimental results for handwritten Hanguel charters 3990 by 10 writers show the recognition rate of $99.5{\%}$and the average processing time of 0.4sec/character.

  • PDF

A Recognition of the Printed Alphabet by Using Nonogram Puzzle (노노그램 퍼즐을 이용한 인쇄체 영문자 인식)

  • Sohn, Young-Sun;Kim, Bo-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.451-455
    • /
    • 2008
  • In this paper we embody a system that recognizes the printed alphabet of two font types (Batang, Dodum) inputted by a black-and-white CCD camera and converts it into an editable text form. The image of the inputted printed sentences is binarized, then the rows of each sentence are separated through the vertical projection using the Histogram method, and the height of the characters are normalized to 48 pixels. With the reverse application of the basic principle of the Nonogram puzzle to the individual normalized character, the character is covered with the pixel-based squares, representing the characteristics of the character as the numerical information of the Nonogram puzzle in order to recognize the character through the comparison with the standard pattern information. The test of 2609 characters of font type Batang and 1475 characters of font type Dodum yielded a 100% recognition rate.