• Title/Summary/Keyword: recognition-rate

Search Result 2,809, Processing Time 0.026 seconds

Gesture Recognition System using Motion Information (움직임 정보를 이용한 제스처 인식 시스템)

  • Han, Young-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.473-478
    • /
    • 2003
  • In this paper, we propose the gesture recognition system using a motion information from extracted hand region in complex background image. First of all, we measure entropy for the difference image between continuous frames. Using a color information that is similar to a skin color in candidate region which has high value, we extract hand region only from background image. On the extracted hand region, we detect a contour using the chain code and recognize hand gesture by applying improved centroidal profile method. In the experimental results for 6 kinds of hand gesture, unlike existing methods, we can stably recognize hand gesture in complex background and illumination changes without marker. Also, it shows the recognition rate with more than 95% for person and 90∼100% for each gesture at 15 frames/second.

Development of Adaptive Signal Pattern Recognition Program and Application to Classification of Defects in Weld Zone by AE Method (적응형 신호 형상 인식 프로그램 개발과 AE법에 의한 용접부 결함 분류에 관한 적용 연구)

  • Lee, K.Y.;Lim, J.M.;Kim, J.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.1
    • /
    • pp.34-45
    • /
    • 1996
  • The signal pattern recognition program which can perform signal acquisition and processing, the extraction and selection of features, the classifier design and the evaluation, is developed and applied to the classification of artificial defects in the weld zone of Austenitic STS304. The neural network classifier is compared with the linear discriminant function classifier and the empirical Bayesian classifier. The signal through a broadband sensor is compared with that through a resonance type sensor. In recognition rate, the neural network classifier is best, and the signal through a broadband sensor is better.

  • PDF

Performance Evaluation of Car Model Recognition System Using HOG and Artificial Neural Network (HOG와 인공신경망을 이용한 자동차 모델 인식 시스템 성능 분석)

  • Park, Ki-Wan;Bang, Ji-Sung;Kim, Byeong-Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, a car model recognition system using image processing and machine learning is proposed and it's performance is also evaluated. The system recognizes the front of car because the front of car is different for every car model and manufacturer, and difficult to remodel. The proposed method extracts HOG features from training data set, then builds classification model by the HOG features. If user takes photo of the front of car, then HOG features are extracted from the photo image and are used to determine the model of car based on the trained classification model. Experimental results show a high average recognition rate of 98%.

Optimized Multi-Output Fuzzy Neural Networks Based on Interval Type-2 Fuzzy Set for Pattern Recognition (패턴 인식을 위한 Interval Type-2 퍼지 집합 기반의 최적 다중출력 퍼지 뉴럴 네트워크)

  • Park, Keon-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.705-711
    • /
    • 2013
  • In this paper, we introduce an design of multi-output fuzzy neural networks based on Interval Type-2 fuzzy set. The proposed Interval Type-2 fuzzy set-based fuzzy neural networks with multi-output (IT2FS-based FNNm) comprise the network structure generated by dividing the input space individually. The premise part of the fuzzy rules of the network reflects the individuality of the division space for the entire input space and the consequent part of the fuzzy rules expresses three types of polynomial functions with interval sets such as constant, linear, and modified quadratic inference for pattern recognition. The learning of fuzzy neural networks is realized by adjusting connections of the neurons in the consequent part of the fuzzy rules, and it follows a back-propagation algorithm. In addition, in order to optimize the network, the parameters of the network such as apexes of membership functions, uncertainty factor, learning rate and momentum coefficient were automatically optimized by using real-coded genetic algorithm. The proposed model is evaluated with the use of numerical experimentation.

Face Recognition Based on Weighted Hausdorff Distance for Profile Image (가중치 하우스도르프 거리를 이용한 프로파일 얼굴인식)

  • 이영학
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.474-483
    • /
    • 2004
  • In this paper, we present a new Practical implementation of a person verification system using the profile of 3-dimensional(3D) face images based on weighted Hausdorff distance(WHD) used depth information. The approach works on finding the nose tip have protrusion shape on the face using iterative selection method to use a fiducial feint and extract the profile image from vertical 3D data for the nose tip. Hausdorff distance(HD) is one of usually used measures for object matching. This works analyze the conventional HD and WHD, which the weighted factor is depth information. The Ll measure for comparing two feature vectors were used, because it is simple and robust. In the experimental results, the WHD method achieves recognition rate of 94.3% when the ranked threshold is 5.

  • PDF

A Study on Embedded DSP Implementation of Keyword-Spotting System using Call-Command (호출 명령어 방식 핵심어 검출 시스템의 임베디드 DSP 구현에 관한 연구)

  • Song, Ki-Chang;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1322-1328
    • /
    • 2010
  • Recently, keyword spotting system is greatly in the limelight as UI(User Interface) technology of ubiquitous home network system. Keyword spotting system is vulnerable to non-stationary noises such as TV, radio, dialogue. Especially, speech recognition rate goes down drastically under the embedded DSP(Digital Signal Processor) environments because it is relatively low in the computational capability to process input speech in real-time. In this paper, we propose a new keyword spotting system using the call-command method, which is consisted of small number of recognition networks. We select the call-command such as 'narae', 'home manager' and compose the small network as a token which is consisted of silence with the noise and call commands to carry the real-time recognition continuously for input speeches.

The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors (Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식)

  • Choi Gwang-Mi;Kim Hyeong-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1513-1517
    • /
    • 2005
  • In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.

Comparision for Hospital P. R. Activities among Large General Hospitals (병원홍보실태에 대한 비교연구)

  • Lee, Hae-Jong;Na, Yu-Mi;Shin, Hee-Young
    • Korea Journal of Hospital Management
    • /
    • v.1 no.1
    • /
    • pp.1-20
    • /
    • 1996
  • This study is purposed to compare PR activities among the 5 large hospitals in Seoul and Kyonggido. The research methods are used in interview survey for employees and Questionnaires survey for patients or their relatives. The 427 patients or their relatives(response rate: 85.4%) were surveyed. The hospital which is below, is more active than any others in special PR activities. 1. Distribution of hospital information books: E, P, A 2. Distribution of calendar: P 3. Broadcast in hospital: E 4. Education of employees about PR : E, A 5. Education of employees about service: all hospitals are active. The PR sectors are organized under the Department of planning(S,J,E) or CEO(P,A). And the budget of PR activities is almost a similar level among all. The degree of recognition and utilization for PR activities is not different among hopitals by the sociodemographic variables of patients. And the average of correlation ratio between recognition of each hopital's PR activities and its utilization is 62.01%(range:51.29%-67.98%) average.

  • PDF

Efficient Iris Recognition using Deep-Learning Convolution Neural Network (딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식)

  • Choi, Gwang-Mi;Jeong, Yu-Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.521-526
    • /
    • 2020
  • This paper presents an improved HOLP neural network that adds 25 average values to a typical HOLP neural network using 25 feature vector values as input values by applying high-order local autocorrelation function, which is excellent for extracting immutable feature values of iris images. Compared with deep learning structures with different types, we compared the recognition rate of iris recognition using Back-Propagation neural network, which shows excellent performance in voice and image field, and synthetic product neural network that integrates feature extractor and classifier.

Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition (차량 규격과 특징 패턴을 이용한 자동차 번호판 추출)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.339-345
    • /
    • 2002
  • Extracting of car licens plate os important for identifying the car. Since there are some problems such as poor ambient lighting problem, bad weather problem and so on, the car images are distorted and the car license plate is difficult to be extracted. This paper proposes a method of extracting car license plate using motor vehicle regulation. In this method, some features of car license plate according to motor vehicle regulation such as color information, shape are applied to determine the candidate of car license plates. For the result of recognition by neural network, the candidate which has characters and numbers patterns according to motor vehicle regulation is certified as license-plate region. The results of the experiments with 70 samples of real car images shoe the performance of car license-plate extraction by 84.29%, and the recognition rate is 80.81%.