• Title/Summary/Keyword: reclamation of tidal land

Search Result 76, Processing Time 0.027 seconds

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Prediction of Pollutant Transport by Dispersion Model on Estuary (확산모형에 의한 하구에서의 오염물질이동 예측(수공))

  • 박영욱;박상현;천만복;이봉훈;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.371-377
    • /
    • 2000
  • Environmental impact on a land reclamation project, Hwaong tidal barrier was studied using the dispersion and advection model to predict the influence of polluted water discharged from freshwater reservior. The simulation results show that the distribution of concentration by influence of polluted water discharged during a tidal cycle appeared to be extinguished at atmost all points after two tidal cycle. Peak concentration near the sluice gate is found out to be higher during the spring tide than neap tide. Equi-concentration contour line appeared to distributed a longer according to line of sea dike in spring tide than neap tide. The reasons is because influence by currents of northwest direction is a stronger, compared to spring tide and neap tide in the flood tide.

  • PDF

Estimation of Historical Shorelines on a Coastal Reclaimed Land (I): The Use of Aerial Photographs (해안 매립지에서 과거 해안선의 산정 (I): 항공사진의 이용)

  • Kim, Baeck-Oon;Lee, Chang-Kyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.371-379
    • /
    • 2009
  • In this paper, we discussed methods and problems for estimating historical shorelines on a reclaimed land. Since many of coastal lands are unregistered in Korea, reclamation of public waters could cause complicated land ownership dispute. Unlike cadastral boundaries, historical shorelines can be represented by those of various locations due to lack of legal definition of shoreline as well as characteristics of shoreline changes, which directly influence on the calculation of coastal and submerged land areas. Through a case study for Anjeong industrial complex, a systematic method of investigating historical shorelines was suggested to resolve the problems. For a rocky coast where shoreline changes are not likely to occur, a shoreline based on tidal datum was retrieved using aerial photographs taken before the construction of reclamation. Compared with ground survey data, the shoreline was accurate, indicating that the digital photogrammetry was reliable.

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척 전.후 잔차류의 계절변화에 관한 연구)

  • Shin, Moon-Seup;vanagi, T.;Hong, Sung-Kun;Lee, Dong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.425-442
    • /
    • 2002
  • The land reclamation area of Saemangeum(Kunsan) is located between $126^{\circ}10'\;E{\sim}126^{\circ}50'\;E\;and\;35^{\circ}35'\;N{\sim}36^{\circ}05'\;N$ at the western coast of the Korean peninsula. The reclamation area of Saemangeum has a range of 5.6m spring tide and the maximum tidal current speed is about $1.41m\;s^{-1}$. In ordinary spring tide. Most of the sediments deposited on the tidal flats are transported from the Geum river, the Mankyung river and the Dongjin river. The soil in this area consists of silty sand with the depth of 10m to 30m. The wind in winter is strong from the direction of northwest. Saemangeum coastal area is being constructed 33km the sea dike and 40,100ha reclamation area. The purpose of this study Is to find the residual circulations in four seasons before and after the dike construction by a robust diagnostic and prognostic numerical model.

Researches on Tidal Flats in Korea (한국의 간석지 연구)

  • JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.59-78
    • /
    • 2011
  • In this study, the tidal flat research history of South Korea was organized by type and period. South Korea's tidal flat research history was largely divided into four fields: sediment research of tidal flat, research using satellite imagery, research on the Quaternary environment change and tidal flats, and ecological research on tidal flats. The comprehensive review of the South Korean tidal flat research history showed that tidal flats had been researched on since the period of Japanese colonial period, but most of the past studies were related to fisheries. Then, in the 1960s, the studies started to focus on the reclaimed land created through reclamation projects. The research on tidal flats from a geomorphological perspective fundamentally started in the 1970s, and the importance of tidal flats became more widely known in the 1980s. Most of the studies then were about the sedimentary environment and the form of landform, the ecosystem, and morphological changes. Since the 2000s, research has been carried out on satellite imagery data together with field survey, to continuously monitor the changes in the sedimentary facies of tidal flats, and in the sedimentary environment. There have been many academic studies on the geographic field of tidal flats, but the research performance on tidal flats in terms of geomorphology is still a blue ocean that has been touched by only a few. Therefore, it is hoped that various studies on Korean tidal flats will be conducted by geomorphologists in the future, and that such area will be established as an important field of study in geomorphology.

Water Quality of Sukmoon Lake Developed by Sea-Dike Construction (석문지구 간척지 담수호 수질변화)

  • 윤광식;인순한
    • Proceedings of the Korean Society of Rural Planning Conference
    • /
    • 1998.10a
    • /
    • pp.16-18
    • /
    • 1998
  • Fresh water lake was developed as a result of tidal land reclamation of the Sukmoon area. Water quality of lake has been monitored before and after sea-dike construction. Water quality degradation has been observed after Sukmoon sea-dike construction. In this paper observed water quality of the Sukmoon lake is presented and possible measures to improve water quality are also discussed.

  • PDF

The Effects of Tidal Currents and Residual Flow on the Sea Dike (해안방조제가 조류 및 잔류흐름에 미치는 영향)

  • Park, Joong-Cheol;Yoon, Young-Ho;Shin, Moon-Seup;Manh, Dinh-Van
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.83-96
    • /
    • 2005
  • Three-dimensional hydrodynamic numerical simulation is carried out to investigate the effects of the coastal land reclamation on the marine hydrodynamics, environment and ecosystem. The changes of tide, tidal currents and residual currents, including tide-induced, wind driven and density driven components due to the construction of the sea dike system are simulated numerically The governing equations transformed into o-coordinates are solved by an implicit finite difference method. The numerical model is calibrated using the tide charts of 4 major tidal constituents, M$_2$, S$_2$, $K_1$ and $O_1$. The numerical solutions show that there are significant changes of residual currents, especially induced by both tidal and wind-driven currents.

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Long-term Variation of Tidal-flat Sediments in Gomso Bay, West Coast of Korea (곰소만 조간대 퇴적물의 장기적 변화)

  • Chang, Jin-Ho;Ryu, Sang-Ock;Jo, Yeong-Jo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.357-366
    • /
    • 2007
  • In Gomso Bay, on the west coast of Korea, the surface sediments sampled in 1991 and 2006 were analysed to identify the long-term variations of tidal flat sediments. Silt and clay contents have decreased in the bay-mouth tidal flats whereas sand and clay contents have decreased on the inner-bay and bay-head tidal flats over the last 15 year period. In particular, the clay contents of the tidal flats in 2006 were relatively low when compared to those of both tidal flats adjacent to other semi-enclosed bays and those of the tidal flats in 1991. The variations of textural compositions in the tidal flat sediments have led to changes of the sedimentary facies. It indicates that the changes must have been made by the changes of hydrodynamic conditions impacted by human activities, such as the construction of sea-walls, land reclamation, structures of farms constructed compactly near the low water line, and the Saemangeum dyke constructed in the northern part of the area where this research was conducted.

Numerical Modeling of Ebb-Dominant Tidal Flow in the Mokpo Coastal Zone (목포해역 낙조류 우세현상의 수치모의)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.333-343
    • /
    • 2010
  • In Mokpo coastal zone, the characteristics showing ebb-dominant tidal flow was confirmed by analysis of observed tide and tidal currents, Physical factors occurring ebb-dominant flow were reviewed. Influence of critical depth for drying, bottom shear stress, coastal reclamation, tidal amplitude, nonlinear tide, and eddy viscosity on the change of ebb-dominant flow was investigated by applying a two-dimensional circulation model. The simulation results for a variety of conditions showed that eddy viscosity and critical depth for drying does little or no impact on the generation of asymmetric flow. Strong bottom friction stress makes ebb-dominant flow clearly. Change of tidal flat into land swells ebb- dominant flow, and change of tidal flat into sea disappears ebb-dominant flow. Nonlinear tides play a decisive role in the generation of asymmetrical tidal flow. Non-linear tides should be included in the open boundary conditions of hydrodynamic modeling in the Mokpo coastal zone.