• Title/Summary/Keyword: reclaimed lands

Search Result 115, Processing Time 0.026 seconds

Analysis of Heating Load Characteristics for Greenhouses Constructed in Reclaimed Lands (간척지 설치 온실의 난방부하 특성 분석)

  • Nam, Sang Woon;Shin, Hyun Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. We analyzed the climatic conditions around seven major reclaimed land areas in Korea, which have a plan to install advanced horticultural complexes. The characteristics of heating load through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. The overall heat transfer coefficient of the experimental greenhouse with the aluminum screen and multi-layer thermal curtain averaged $3.79W/m^2^{\circ}C$. It represents a 44 % heat savings rate compared with plastic greenhouses with a single covering, which was significantly lower than that of the common greenhouses with 2-layer thermal curtains. This is because the experimental greenhouse was installed on reclaimed land and wind was stronger than the inland area. Among the total heating load, the transmission heat loss accounted for 96.4~99.9 %, and the infiltration loss and the ground heat exchange were low. Therefore, it is necessary to take countermeasures to minimize the transmission heat loss for greenhouses constructed in reclaimed lands. As the reclaimed land is located on the seaside, the wind is stronger than the inland area, and the fog is frequent. Especially, Saemangeum area has 2.6 times stronger wind speed and 3.4 times longer fog duration than the inland area. In designing the heating systems for greenhouses in reclaimed lands, it is considered that the maximum heating load should be calculated by applying the wind coefficient larger than the inland area. It is reasonable to estimate the operation cost of the heating system by applying the adjustment factor 10 % larger than the average in calculating the seasonal heating load.

Survey for Reclaimed Lands in Western Coast of North Korea using Satellite Image data (인공위성 영상 자료를 이용한 북한 지역의 간척지 조사)

  • 신석효;김상철;안기원;김남식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.251-257
    • /
    • 2004
  • The Electro-Optical Camera(EOC) image of the first Korea Multi-Purpose Satellitel(KOMPSAT-1) has both high resolution and convenient acquisition of research data, but on the other hand it has a defect of one band image. Fortunately, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data are receiving every day at the Korea Aerospace Research Institute (KARI). Therefore, this paper performed an effective merging for survey of reclaimed land using the high-resolution (6.6m) KOMPSAT-1 EOC image and the multispectral MODIS image data. According this paper prepared map of reclaimed lands in Western Coast of North Korea as quantitative(position and form) survey of reclaimed lands of North Korea using merged image. The use of KOPSAT-1 EOC image and MODIS images was found to be economical such using of large scale areas as reclaimed land or according easy to collect information and such north korea as inaccessible areas like as receiving every day.

  • PDF

Soil Chemical Properties of Reclaimed Tide Lands Under Government Management in Korea: Results of 4-years monitoring (한국의 국가관리 간척지 토양의 화학성 변동: 4년 모니터링 결과)

  • Ryu, Jin-Hee;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Jeong-Tae
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.273-280
    • /
    • 2019
  • BACKGROUND: The reclaimed lands for agricultural use managed by the Korean government is consisted of 17,145 hectares of lands under construction and 13,384 hectares of completed lands. In order to utilize these reclaimed lands as competitive agricultural complexes, the government is preparing to develop comprehensive development plans for multiple purposes. For rational land-use planning and soil management, information of the soil chemical properties is necessary. METHODS AND RESULTS: From 2013 to 2016, soil samples were collected from 85 representative sampling sites of the reclaimed lands and analyzed for soil chemical properties including electric conductivity (EC), pH, soil organic matter (SOM), and nutrients. The annual mean soil EC ranged from 5.1 to 8.3 dS m-1 and have continued to decrease over the years (estimation equation with EC as dependent and year as independent variable was y =0.0736x2 - 1.4985x + 9.8305, R2 = 0.9753). The pH ranged from 7.3 to 7.6, which was higher than the optimum range (5.5~7.0) for agricultural soils. Soil organic matter (8 to 11 g kg-1) was lower level than the optimum range (20~30 kg-1). Available silicate (Av.SiO2) ranged from 169 to 229 mg kg-1, which was close to the minimum content (≥157 mg kg-1) for rice paddy field. Available phosphate (Av.P2O5) content (24~39 mg kg-1) was lower than the optimum range (80~120 mg kg-1) for rice paddy field. CONCLUSION: For efficient agricultural use of reclaimed lands under government management, our results suggest that the application of organic matter and supplying deficient nutrients as well as desalinization is required.

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Structural Safety of Single-Span Greenhouses under Wind Load of Costal Reclaimed Lands (간척지 내 단동형 온실의 풍하중에 대한 구조 안정성 분석)

  • Hong, Se-Woon;Kim, Rack-Woo;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.109-117
    • /
    • 2017
  • Coastal reclamation has created large flat lands, part of which is an attractive site to construct greenhouse complexes for the horticulture industry. Wind environments over these coastal lands are entirely different from those of the inland area, and demand increased structural safety. The objective of this study is to evaluate the structural safety of two single-span greenhouses, peach type and even-span type, under the wind characteristics of coastal reclaimed lands. The wind pressure coefficients acting on the walls and roofs of two greenhouses were measured by wind tunnel experiments, and those acting on the roofs were approximately two times larger than those suggested by the existing design guidelines. Consequently, structural analysis conducted by SAP2000 showed that greenhouse structures designed by the existing guidelines might lead to structural failure under coastal wind conditions because their maximum allowable wind speeds were lower than the design wind speed. Especially, the peach type greenhouse constructed in a reclaimed land could be damaged by approximately 48 % of the design wind speed and needed improvement of structural designs. This study suggested increasing the spacing of rafters with thicker pipes for the peach type greenhouse to enhance economic feasibility of the building under strong wind conditions of reclaimed lands.

Analysis of Electrical Conductivity during Desalinization of Reclaimed Tidal Lands (간척지 토양의 제염과정 중 전기전도도 분석)

  • 구자웅;최진규;손재권;윤광식;이동욱;조경훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.37-49
    • /
    • 2001
  • This study was performed in order to produce the basic data for developing prediction techniques of desalinization to be applicable to reclaimed tidal lands at the beginning stage. the desalinization experiments were carried out by two water management practices, namely, the leaching method by subsurface drainage and the rinsing method by surface drainage. The 5 soil samples used in this study were collected in 4 tidal land reclamation projects. Regression equations were obtained in order to investigate the changes of electrical conductivity during the desalinization of reclaimed tidal lands and to estimate water requirements for desalinization. The results obtained from this study were summarized as follows: 1. According to USDA Salinity Laboratory classification system of salt affected soils the reclaimed tidal land soils used in this study were saline-sodic soils with the high electrical conductivity and the high exchangeable sodium percentage. 2. With the increase of the water requirements for desalinization the electrical conductivity was decreased with high degree of correlationships and the desalinization effects were remakable in both the leaching method and the rinsing method. 3. In case of the leaching method the electrical conductivity had been reduced below the classification value of salt affected soils when the depth o water leached per unit depth of soil (Dwl/Ds) was 0.3 and the desalinization effects showed a tendency to be much the same in each treatment.

  • PDF

Changes of physico-chemical properties in the reclaimed tidal land soils by precipitation (자연강우에 의한 간척지토양의 이화학적 특성변화)

  • Kim, Jae-Young;Son, Jae-Gwon;Koo, Ja-Woong;Choi, Jin-Kyu
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.1 s.15
    • /
    • pp.3-14
    • /
    • 2002
  • Changes of chemical properties by times of the reclaimed tidal land soils and soil surface water, underground infiltration water with precipitation-runoff on natural meteological condition in the unripened tidal reclaimed paddy fields were investigated. This study was carried out to use environment-friendly farm land in the reclaimed tidal lands. The soils used in this study were saline-alkaline soils with the high $Na^+$ and $Mg^{++}$ content. As the results of investigation outflow loading of nutriments through outflow water in the unripened tidal reclaimed paddy fields by precipitation during the survey period, nutriments equivalent to T-N $1{\sim}2\;kg\;10a^{ -1}$ and T-P $0.01{\sim}0.02\;kg\;10a^{-1}$ from in the unripened tidal lands were discharged. Besides, the results of comparison losses of cation through outflow water showed $Na^+>\;K^+>\;Mg^{++}\;>\;Ca^{++}$, and the highest appeared water discharge of $Na^+$. In case of saemangeum reclaimed tidal land soils water discharge of cations showed $Ca^{++}$ 1.3 kg $10a^{-1}$, $Mg^{++}$ 1.6 kg $10a^{-1}$, $Na^+$ 17.7 kg $10a^{-1}$, and $K^+$ 3.2 kg $10a^{-1}$ respectively. On the other hand, in case of koheung reclaimed tidal lands soils water discharge of cations showed $Ca^{++}$ 18.1 kg $10a^{-1}$, $Mg^{++}$ 31.2 kg $10a^{-1}$, $Na^+$ 320.8 kg $10a^{-1}$ and $K^+$ 51.2 kg $10a^{-1}$ respectively.

Relation between Chemical Properties and Microbial Activities in Soils from Reclaimed Tidal Lands at South-western Coast Area in Korea

  • Park, Mi-Na;Go, Gang-Seuk;Kim, Chang-Hwan;Bae, Hui-Su;Sa, Tongmin;Choi, Joon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.262-270
    • /
    • 2015
  • The scientific information between microbial community and chemical properties of reclaimed tidal soil is not enough to understand the land reclamation process. This study was conducted to investigate the relation between chemical properties and microbial activities of soils from reclaimed tidal lands located at south-western coastal area (42 samples from Goheuong, Samsan, Bojun, Kunnae, Hwaong and Yeongsangang sites). Most of the reclaimed soils showed chemical characteristics as salinity soil based on EC. Only $Na^+$ in exchangeable cation was dependent on EC of reclaimed soil, whereas other cations such as $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were independent on EC. The mesophilic bacteria decreased with an increase in EC of soil. Microbial population increased with soil organic content in the range of $0{\sim}10g\;kg^{-1}$ and dehydrogenase activity less than $100{\mu}g-TPF\;g^{-1}h^{-1}$. Microbial population of soils from reclaimed tidal lands was closely related to the microbial community containing hydrolytic enzyme activities of cellulase, amylase, protease, and lipase.

effects of Sand Mulching on Forage Production in Newly Reclaimed Tidal Lands II. Studies on growth , dry matter accumulation and nutrient quality of selected forage crops grown on saline soils (간척지 사료작물 재배에 있어서 모래를 이용한 토양 mulching의 효과 II. 간척지 재배목초의 생육 및 건물축적형태와 사료가치에 관한 연구)

  • 김정갑;한민수
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 1990
  • A three year's field experiment was carried out on newly reclaimed tidal saline soils to evaluate the salt tolerance and growht characteristics, and their relationship to dry matter production and nutrient quality of main selected pasture species. Nine temperate grasses (14 varieties) and two forage crops (sorghum and pearl millet) were grown under different mulching treatments with medium sand and red-yellow soils (fine loamy materials of Typic Hapludults) from 1986 to 1988. Tall wheatgrass, tall fescue, reed canarygrass and alfalfa showed a good tolerance to soil salinity, especially tall wheatgrass (cv. Alkar) produced 19.6 ton/ha dry matter yield annualy under mulching treatment with medium sand depth in lcm. Pearl millet (cv. Gahi-3) was also evaluated as a salt tolerable forage species. Under salt stress in newly reclaimed tidal lands, plant showed a decrease in the assimirable leaf area (LA) as well as specific leaf area (SP. LA) and a low leaf weight ratio(LWR), and it resulted in a low concentration of crude protein and low digestible dry matter contents. Absorption of macro and micro elements in the plant on tidal lands was increased markedly.

  • PDF