• Title/Summary/Keyword: reciprocating compressor

Search Result 159, Processing Time 0.024 seconds

THE CHARACTERISTIC OF A TWO STAGE AMMONIA RECIPROCATING COMPRESSOR (왕복동 압축기의 성능에 대하여)

  • CHO Kweoun Ock;OH Hoo Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.65-69
    • /
    • 1977
  • The characteristics of two stage compressor which is constituted of two separated reciprocating compressors was tested measuring the volumetric efficiency of each compressor at suction of both bighandlowpressdresideusillgorificetypeflolrmeters. The volumetric efficiency of low pressure side compressor was lower than that of the high side when they were operating under the same compression ratio. And it tended to reduce obviously by lowering evaporating temperature resulting in a markable reduction of refrigerating capacity at the same time. It is assumed that the falling of volumetric efficiency at low side compressor was directed by the decrease in evaporating temperature which derives the falls of gas pressure at suction, increase in compression ratio, and gas flow resistance at suction and discharge valves.

  • PDF

Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing (스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석)

  • Kim, Tae-Jong
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

Effect of Snubber-Array on Variation of Pressure Characteristics in Reciprocating Hydrogen Compression

  • Chung, Han-Shik;Rahman, M. Sq.;Lee, Gyeong-Hwan;Jin, Zhenhua;Kim, Jeong-Hyeon;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1034-1043
    • /
    • 2009
  • Hydrogen energy is becoming popular day by day due to its renewability and pollutaaant free natures. Hydrogen gas pressure which is after passing through reciprocating compressor part has high pulsation wave form. A unit, snubber is used as compressor components to reduce the harmful pulsation waveform and to remove the impurities in the hydrogen gas. An experiment has been conducted to investigate the pulsation reduction performance of different arrangement of snubber i.e. snubber array used in reciprocating compression system. Analyzing the snubber array experimental data, it is found that the pressure fluctuations are reduced from 90.1977% ~ 92.6336% with pressure loss 1.5013% ~ 4.9034% for compressor operation at different speed which ensure the good performance of snubber-array as pulsation damper in hydrogen compressing system.

A Study on Oil Path Design in the Journal Bearing of a Reciprocating Compressor (왕복동식 압축기의 저널 베어링 오일 패스 설계를 위한 연구)

  • Cho, Ihn Sung;Jung, Jae Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.839-846
    • /
    • 2013
  • Because the performance of a reciprocating compressor in refrigeration and air-conditioning systems is influenced by the lubrication characteristics of sliding components, the lubrication characteristics between the crankshaft and journal bearing have to be researched for the design and the performance improvement of reciprocating compressors. Thus, the proper supply of lubricant for a lubrication between the crankshaft and journal bearing is essential, and an oil path for lubricant supply is installed in the shaft or bearing. However, in order to guarantee the lubrication performance of the journal bearing, it is necessary to design the position of the oil path. Therefore, it is studied to find the optimum position of the oil path by the analysis of the pressure distribution in the journal bearing. The results show that the position of the oil path is significantly influenced by the pressure distribution of the oil film in the journal bearing.

Dynamic Analysis of the Piston Slap Motion in Reciprocating Compressors

  • Kim, Tae-Jong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.411-412
    • /
    • 2002
  • Piston-cylinder system are widely used in power engineering applications. In reciprocating refrigeration compressors, where extremely low friction losses are required, ringless pistons are being used to diminish the friction between piston rings and cylinder wall. Since the ringless piston has the freedom of lateral motion there is a potential danger that it will occasionally hit the cylinder wall while moving up and down along it's axis. A good design must therefore provide a smooth and stable reciprocating motion of the piston and ensure that the fluid film separating the piston from the cylinder wall is maintained all times. And the compromise between refrigerant gas leakage through the piston-cylinder clearance and the friction losses is required utilizing a dynamic analysis of the secondary motion for the high efficiency compressor. To this end, the computer program is developed for calculating the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses.

  • PDF

Fault Detection of Reciprocating Compressor for Small-Type Refrigerators Using ART-Kohonen Networks and Wavelet Analysis

  • Yang, Bo-Suk;Lee, Soo-Jong;Han, Tian
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2013-2024
    • /
    • 2006
  • This paper proposes a condition classification system using wavelet transform, feature evaluation and artificial neural networks to detect faulty products on the production line of reciprocating compressors for refrigerators. The stationary features of vibration signals are extracted from statistical cumulants of the discrete wavelet coefficients and root mean square values of band-pass frequencies. The neural networks are trained by the sample data, including healthy or faulty compressors. Based on training, the proposed system can be used on the automatic mass production line to classify product quality instead of people inspection. The validity of this system is demonstrated by the on-site test at LG Electronics, Inc. for reciprocating compressors. According to different products, this system after some modification may be useful to increase productivity in different types of production lines.

A Study on Efficiency Enhancement in a Reciprocating Compressor for a Domestic Refrigerator (소형 냉장고용 왕복동식 압축기의 효율향상에 관한 연구)

  • Sim Yun-Hee;Youn Young;Park Youn Cheol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.418-426
    • /
    • 2005
  • Efficiency of the compressor is most important parameter in the domestic refrigerator which runs year around. With developed analytical model about heat transfer analysis in the hermetic compressor, parametric study was performed to know the effect on efficiency by design and material modification of the compressor. Volumetric efficiency of the compressor increased approximately $3\%$ when insulation is increased about $50\%$ in suction component. However, the insulation effect on discharge component was only $1\%$. When the thermal conductivity of the discharge plenum is reduced from 300 to 20 $W/m{\cdot}K$, volumetric efficiency increased about $3.1\%$. There is no attraction in efficiency increment with variation of outside surface area of the compressor and radial heat transfer coefficient of the solid component in the compressor shell.

Numerical Analysis on the Working Fluid Flow of Suction-passage for Reciprocating Compressor (왕복동식 수소압축기의 흡입통로내 작동유체 유동해석)

  • Lee, Gyeong-Hwan;Rahman, Mohammad Shiddiqur;Shim, Kyu-Jin;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1201-1207
    • /
    • 2008
  • Numerical analysis information will be very useful to improve fluid system. General information about an internal gas flow is presented by numerical analysis approach. Relating with hydrogen compressing system, which have an important role in hydrogen energy utilization, this should be a useful tool to observe the flow quickly and clearly. Flow characteristic analysis, including pressure and turbulence kinetic energy distribution of hydrogen gas coming to the cylinder of a reciprocating compressor are presented in this paper. Suction-passage model is designed based on real model of hydrogen compressor. Pressure boundary conditions are applied considering the real condition of operating system. The result shows pressure and turbulence kinetic energy are not distributed uniformly along the passage of the Hydrogen system. Path line or particles tracks help to demonstrate flow characteristics inside the passage. The existence of vortices and flow direction can be precisely predicted. Based on this result, the design improvement, such as reducing the varying flow parameters and flow reorientation should be done. Consequently, development of the better hydrogen compressing system will be achieved.

Structure Modification of the Reciprocating Compressor Using Component Mode Synthesis (부분구조합성법에 의한 왕복동식 압축기 구조 변경)

  • Kim, Soo-Hyun;Lee, Jeong-Ick;Lee, Dong-Yeon;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • This paper discuss about structure modification method of the reciprocating compressor to reduce its vibration and noise in small refrigeration system. The structure modification is applied using analytic FE models and then applying suggested Component Mode Synthesis(CMS) algorithms. The efficient CMS algorithms to a compressor's fixed base design problem are analytically tried and verified from some experiments.