• Title/Summary/Keyword: recharge.

Search Result 499, Processing Time 0.03 seconds

A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea (시설농업지역 지하수 인공함양 실증시험 연구)

  • Lee, Byung Sun;Myoung, Wooho;Oh, Sebong;Jun, Seong-Chun;Piao, Jize;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.

Assessment of Potential Natural Attenuation of Arsenic by Geological Media During Managed Aquifer Recharge (대수층 함양관리에 있어서 지질매질에 의한 비소 자연저감 가능성 평가)

  • Park, Dasomi;Hyun, Sung Pil;Ha, Kyoochul;Moon, Hee Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.12-22
    • /
    • 2020
  • Managed aquifer recharge (MAR) is a promising water management strategy for securing stable water resources to overcome water shortage and water quality deterioration caused by global environmental changes. A MAR demonstration site was selected at Imgok-ri, Sangju-si, Korea, based on screening for the frequency of drought events and local water supply situations. The abundant groundwater discharging from a nearby abandoned coal mine is one of the potential recharge water sources for the MAR implementation. However, it has elevated levels of arsenic (~12 ㎍/L). In this study, the potential of the natural attenuation of arsenic by the field geological media was investigated using batch and column experiments. The adsorption and desorption parameters were obtained for two drill core samples (GM1; 21.8~22.8 m and GM2; 26.0~27.8 m depth) recovered from the potentially water-conducting fracture-zones in the injection well. The effluent arsenic concentrations were monitored during the continuous flow of the mine drainage water through the columns packed with the core samples. GM2 removed about 60% of arsenic in the influent (0.1 mg-As/L) while GM1 removed about 20%. The results suggest that natural attenuation is an acitive process occurring during the MAR operation, potentially lowering the arsenic level in the mine drainage water below the regulatory standard for drinking water. This study hence demonstrates that using the mine drainage water as the recharge water source is a viable option at the MAR demonstration site.

A Method of Site Selection for the Artificial Recharge of Groundwater Using Geospatial Data (지형공간자료를 이용한 지하수 인공함양 적지 선정 방안)

  • Lee, Jae One;Seo, Minho;Han, Chan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.427-436
    • /
    • 2015
  • This study aims to select an optimal site for the development of small-scaled artificial ground water recharge system with the purpose of 50ton/day pumping in dry season. First of all, the topography shape satisfying the numerous factors of a hydraulic model experiment is defined and an appropriate pumping efficiency is calculated through the model experiment of injection and pumping scenario. In next step, GIS(Geographic Information System) database are constructed by processing several geospatial data to explore the optimal site. In detail, watershed images are generated from DEM(Digital Elevation Model) with 5m cell size, which is set for the minimum area of the optimal site selection. Slope maps are made from DEM to determine the optimal hydraulic gradient to procure the proper aquifer undercurrent period. Finally, the suitable site for artificial recharge system is selected using an integration of overall data, such as an alluvial map, DEM, orthoimages, slope map, and watershed images.

Estimation Methods of Groundwater Recharge Rate in Small Basin (소유역의 지하수함양율 추정기법)

  • 박재성;김경호;전민우;김지수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.76-86
    • /
    • 1999
  • It is necessary to estimate the groundwater recharge rate properly to predict the demand of groundwater and to establish the plan for the development of groundwater in the future. In this paper, A small basin in Chojung area is selected to calculate the groundwater recharge rate. In the calculation, water balance analysis, SCS-CN (Soil Conservation Service-Curve Number) method. groundwater-level analysis and hydrograph of outflow analysis are applied to this area. Data of precipitation measured by Chungju climatological station for about 10 years are used for water balance analysis and SCS-CN method. For the groundwater-level analysis. variations of groundwater-level measured from the 3 test wells in 1997's are used and stage-discharge rating curves in this area for 3 years are used for the hydrograph of outflow. The recharge rate calculated by water balance is 19%, 12.95% by SCS-CN method. 16.51% by groundwater-level analysis and 10.9% by hydrograph of outflow analysis and the overall average recharge rate is about 14.84%.

  • PDF

Groundwater Balance in Urban Area (도시지역의 지하수수지)

  • Lee, Seung-Hyun;Bae, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1553-1560
    • /
    • 2011
  • The study analyzes groundwater balance with regard to the water recharge and discharge which contain urbanization components in Suyeong-gu, Busan. It also verifies the reliability and accuracy improvement on the analysis of the balance. The result of the study is viewed as preliminary data which are useful to develop, utilize and manage groundwater. The average quantity of groundwater recharge is 6,014.1 $m^3$/day in the research area during the last ten year period(from 1998 to 2007). The outflow from drainage areas to rivers and coasts is 149.3 $m^3$/day, the inflow from rivers and coasts to drainage area is 439.9 $m^3$/day. The use of the water is 4,243.0 $m^3$/day. The outflow caused by subway in line No.2 and No.3 through Suyeong-gu and the one by building an underground electric complex is 1,500.0 $m^3$/day. The leakage of water works is 6514.9 $m^3$/day. The inflow and outflow of sewerage is 5082.2 $m^3$/day from groundwater to sewer. The amount of groundwater recharge, the inflow from rivers and coasts to drainage area, and the leakage of water works belong to the amount of groundwater inflow and the total amount is 12,968.9 $m^3$/day. The amount of outflow from drainage area to rivers and coasts, the use of groundwater, outflow by subway and underground electric complex tunnel and the amount of inflow of the water to sewerage belong to the amount of outflow of groundwater and the sum amount is 13,031.5 $m^3$/day. The gap between the amount of inflow and outflow of groundwater is 62.6 $m^3$/day, which is considered to reflect the trend that the short term drop in the amount of rainfall results in the amount of groundwater recharge and that the amount of outflow from drainage area to rivers and coasts decreases.

Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models (SWAT 모형과 BFlow를 이용한 지하수 함양, 기저유출의 시공간적 변화 분석)

  • Lee, Ji Min;Park, Youn Shik;Jung, Younghun;Cho, Jaepil;Yang, Jae Eui;Lee, Gwanjae;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.549-558
    • /
    • 2014
  • Occurrence frequency of flood and drought tends to increase in last a few decades, leading to social and economic damage since the abnormality of climate changes is one of the causes for hydrologic facilities by exceedance its designed tolerance. Soil and Water Assessment Tool (SWAT) model was used in the study to estimate temporal variance of groundwater recharge and baseflow. It was limited to consider recession curve coefficients in SWAT model calibration process, thus the recession curve coefficient was estimated by the Baseflow Filter Program (BFLOW) before SWAT model calibration. Precipitation data were estimated for 2014 to 2100 using three models which are GFDL-ESM2G, IPSL-CM5A-LR, and MIROC-ESM with Representative Concentration Pathways (RCP) scenario. SWAT model was calibrated for the Soyang watershed with NSE of 0.83, and $R^2$ of 0.89. The percentage to precipitation of groundwater recharge and baseflow were 27.6% and 17.1% respectively in 2009. Streamflow, groundwater recharge, and baseflow were estimated to be increased with the estimated precipitation data. GFDL-ESM2g model provided the most large precipitation data in the 2025s, and IPSL-CM5A-LR provided the most large precipitation data in the 2055s and 2085s. Overall, groundwater recharge and baseflow displayed similar trend to the estimated precipitation data.

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

The Study on Time Series Analysis of Groundwater Data and Groundwater Recharge in Jeju Island (제주도 수리자료에 대한 시계열 분석 및 지하수 함양률 추정 연구)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Ha, Kyoo-Chul;Kim, Gee-Pyo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2011
  • We examined temporal variations in and relationships among groundwater level, groundwater temperature, and electric conductivity, and estimated groundwater recharge at Jeju Island. The time lag and regulation time of groundwater level data revealed that monitoring well in Ansung (JM-AS) has the highest auto-correlation. The cross-correlations for electric conductivity-water level, precipitation-water level, and air temperature-water temperature revealed that monitoring well in Seogwi-2 (JR-SG2) (electric conductivity-water level), monitoring well in Hamo (JD-HM) (precipitation-water level), and monitoring well in Wonjongjang-2 (JT-WJJ2) (air temperature-water temperature) had the highest cross-correlations. The average groundwater recharge ratio was 39.61%, and the average groundwater recharge amount was 1,153,490,407 $m^3/yr$, which is consistent with the results of previous studies.

Analysis and evaluation of hydrological components in a water curtain cultivation site (수막재배지역의 수문성분 해석 및 평가)

  • Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.731-740
    • /
    • 2016
  • This study conducts the hydrological component analysis from 2010 to 2015 at the water curtain cultivation area in Cheongwon-gu, Cheongju-si and investigates the monthly based groundwater recharge variation. It is found that the rates of evaportranspiration, surface runoff and groundwater recharge were varied according to the total annual precipitation and their correlations were also changed annually. Annual recharge rates for annual precipitation ranged from 8.3% to 19%, and their coefficient of determination ranged from 0.39 to 0.94. Especially in 2015, when the severe drought came upon this area, the lack of groundwater recharge made groundwater level decrease consistently. Thus, it is thought that the special method of estimating exploitable groundwater in water curtain cultivation site is to be introduced.

Evaluation of Potential Amount of Groundwater Development in Chungju Basin by Using Watershed Hydrologic Model and Frequency Analysis (유역수문모형과 빈도해석을 이용한 충주댐 상류유역 지하수 개발가능량의 평가)

  • Lee, Jeong-Eun;Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.443-451
    • /
    • 2008
  • Memon(1995) pointed out that the groundwater recharge from the precipitation is affected by various factors such as the occurrence, intensity, duration, and seasonal distribution of rainfall; air temperature, humidity, and wind velocity; the character and thickness of the soil layer above the water table; vegetated cover, soil moisture content, depth to the water table, topography; and land use. To reflect above factors, groundwater recharge in Chungju basin is computed by using the SWAT-K which is a longterm continuous watershed hydrologic model. Frequency analysis is adopted to evaluate the existing values of potential amount of groundwater development which is made by the 10 year drought frequency rainfall multiplied by recharge coefficient. In this work, the recharge rates of 10 year drought frequency in subbains were computed and compared with the existing values of potential amount of groundwater development. This process could point out the problems of existing precesses used for computing potential amount of groundwater development.