• Title/Summary/Keyword: receptor agonist

Search Result 562, Processing Time 0.037 seconds

Effects of Endothelium on ${\alpha}_1$-and ${\alpha}_2$-adrenoceptor Agonist-induced Contraction in the Rat Isolated Aorta (흰쥐 적출 대동맥에서 ${\alpha}_1$-수용체 효능약과 ${\alpha}_2$-수용체 효능약의 혈관수축반응에 대한 내피세포의 영향)

  • Chung, Joon-Ki;Hong, Sung-Cheul;Choi, Su-Kyung;Kang, Maeng-Hee;Ku, Mi-Geong;Park, Sang-Il;Yun, Il
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.180-191
    • /
    • 1990
  • A comparison was made of the effects of selective ${\alpha_1}-adrenoceptor$ agonist phenylephrine and selective ${\alpha_2}-adrenoceptor$ agonist clonidine on endothelium-containing and endothelium-denuded rings of the rat aorta. In the case of phenylephrine, removal of endothelium increased sensitivity 2.5 fold at $EC_{50}$ level and maximum contractive response 1.4 fold. In the case of clonidine, which gave only 15% of maximum contractive response given to phenylephrine on endothelium-containing rings, removal of the endothelium increased sensitivity 5.6 fold at $EC_{50}$ level and maximum contractive response 5 fold, which was about 55% of that given by phenylephrine. In endothelium-denuded ring, phenylephrine-induced contraction tended to be more increased in tonic contraction than in phasic contraction as compared to that in endothelium-containing ring, while clonidine-induced contraction was monophasic and was increased only in tonic contraction. In the calcium-free solution or in the presence, of verapamil, contraction stimulated by clonidine was almost abolished while that stimulated by phenylephrine produced only phasic contraction. The depression of sensitivity to these agonists in rings with endothelium appeared to be due to the vasodepressor action of endothelium derived relaxing factor (EDRF), because hemoglobin, a specific blocking agent of EDRF, abolished this depression. It is unlikely that the endothelium-dependent relaxation was due to stimulation of release of EDRF, because clonidine did not produce endothelium-dependent relaxation in 5-hydroxytryptamine-precontracted ring even when its contractile action was blocked by the ${\alpha_1}-adrenoceptor$ antagonist, prazosin. When the efficacy of phenylephrine was reduced to about the initial efficacy of clonidine by pretreatment with dibenamine, the contraction-response curves for phenylephrine became very similar to the corresponding curves obtained for clonidine before receptor inactivation. In the dibenamine-treated rings, contraction of phenylephrine was abolished in calcium-free solution or in the presence of verapamil like that obtained for clonidine before receptor inactivation. These results suggest that EDRF spontaneously released from endothelium depress contraction more profoundly in a case of an agonist with low efficacy and the phenylephrine-induced contraction was totally dependent on extracellular calcium as was that obtained for clonidine when the efficacy of phenylephrine was reduced to that of clonidine by irreversible inactivation of ${\alpha_1}-adrenoceptor$ with dibenamine.

  • PDF

Effect of $K^+-channel$ Blockers on the Muscarinic- and $A_1-adenosine-Receptor$ Coupled Regulation of Electrically Evoked Acetylcholine Release in the Rat Hippocampus

  • Yu, Byung-Sik;Kim, Do-Kyung;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • It was attempted to clarify the participation of $K^+-channels$ in the post-receptor mechanisms of the muscarinic and $A_1-adenosine$ receptor- mediated control of acetylcholine (ACh) release in the present study. Slices from the rat hippocampus were equilibrated with $[^3H]$choline and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 V/cm, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Oxotremorine (Oxo, $0.1{\sim}10\;{\mu}M$), a muscarinic agonist, and $N^6-cyclopentyladenosine$ (CPA, $1{\sim}30\;{\mu}M$), a specific $A_1-adenosine$ agonist, decreased the ACh release in a dose-dependent manner, without affecting the basal rate of release. 4-aminopyridine (4AP), a specific A-type $K^+-channel$ blocker ($1{\sim}100\;{\mu}M$), increased the evoked ACh release in a dose-related fashion, and the basal rate of release is increased by 3 and $100\;{\mu}M$. Tetraethylammonium (TEA), a non-specific $K^+-channel$ blocker ($0.1{\sim}10\;{\mu}M$), increased the evoked ACh release in a dose-dependent manner without affecting the basal release. The effects of Oxo and CPA were not affected by $3\;{\mu}M$ 4AP co-treatment, but 10 mM TEA significantly inhibited the effects of Oxo and CPA. 4AP ($10\;{\mu}M$)- and TEA (10 mM)-induced increments of evoked ACh release were completely abolished in Ca^{2+}-free$ medium, but these were recoverd in low Ca^{2+}$ medium. And the effects of $K^+-channel$ blockers in low Ca^{2+}$ medium were inhibited by $Mg^{2+}$ (4 mM) and abolished by $0.3\;{\mu}M$ tetrodotoxin (TTX). These results suggest that the changes in TEA-sensitive potassium channel permeability and the consequent limitation of Ca^{2+}$ influx are partly involved in the presynaptic modulation of the evoked ACh-release by muscarinic and $A_1-adenosine$ receptors of the rat hippocampus.

  • PDF

Pinacidil causes depresor action, catecholamine release and vasorelaxation in the normotensive rat

  • Lim, Dong-Yoon;Lee, Eun-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.87.2-88
    • /
    • 2003
  • The present study was conducted to investigate the effects of pinacidil, a potassium channel opener, on arterial blood pressure, catecholamine release and vascular contractile responses in the normotensve rats and to establish the mechanism of action. Phenylephrine (an adrenergi $_1$-receptor agonist) and high potassium (a membrane- depolarizing agent) caused greatly contractile responses in the isolated aortic strips, respectively. These phenylephrine (10$\^$-5/ M)-induced contractile responses were dose-dependently depressed in the presence of pinacidil (25 ∼ 100 ${\mu}$M). (omitted)

  • PDF

Structural Aspects of GPCR-G Protein Coupling

  • Chung, Ka Young
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.149-155
    • /
    • 2013
  • G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Effect of Rosiglitazone on Myocardial Ischemia-Reperfusion Injury in Rat Heart

  • Ha, Ki-Chan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • This study was undertaken to evaluate whether peroxisome proliferator-activated-receptor-gamma $(PPAR-{\gamma})$ agonist-rosiglitazone (ROSI) induces postischemic functional recovery in Langendorf heart model. Hearts isolated from normal rats were subjected to 20 min of normoxia or 25 min zero-flow ischemia followed by 50 min reperfusion. In this acute protocol, ROSI $(20\;{\mu}g/ml)$ administered 10 min before ischemia had no effect on hemodynamic cardiac function, but had protective effect on lipid peroxidation in in vitro experiments. In chronic protocol in which ROSI was given by daily gavage (4 mg/kg) for three consecutive days, ROSI could not prevent the hemodynamic alteration on cardiac performance, but has protective effect on the activity of superoxide dismutase (SOD). There was no significant difference in the contents of reduced glutathione (GSH) and catalase activity between ischemia-reperfusion (IR) and ROSI treated IR hearts. Although ROSI had no effect on hemodynamic factor, it had effect on antioxidant activity. Our results indicate that ROSI provides partial beneficial effects by inhibiting lipid peroxidation and/or recovering normal level of SOD activity in the ischemic reperfused heart.

Studies on the Mechanism of Renal Action Induced by Idnzoxan, $\alpha$$_2$-Adrenergic Antagonist, in Dog ($\alpha$$_2$-교감신경 수용체 차단제인 Idazoxan의 신장작용의 기전에 관한 연구)

  • 고석태;강경원
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Idazoxan, $\alpha$$_2$-adrenergic antagonist, produced antidiuretic action by administration into the vein and diuretic action only in ipsilateral kidney by injection into a renal artery in dog. These studies were performed for investigation of mechanism on the renal action induced by idazoxan. Antiduretic action by idazoxan given into vein and diuretic action only in ipsilateral kidney by idazoxan injected into a renal artery were blocked entirely by renal denervation. Antidiuretic action of idazoxan given into the vein was weakened by UK 14,304, $\alpha$$_2$-adrenergic agonist, pretreated into the vein. Above results suggest that antidiuretic action of idazoxan given into the vein is caused by blocking of $\alpha$$_2$-adrenergic receptor, diuretic action only in ipsilateral kidney of idazoxan injected into a renal artery by blocking of $\alpha$$_2$-adrenergic receptor in the kidney.

  • PDF