• Title/Summary/Keyword: receptor activator of nuclear factor kappa-B ligand

Search Result 108, Processing Time 0.032 seconds

Carboxypeptidase E Is a Novel Modulator of RANKL-Induced Osteoclast Differentiation

  • Kim, Hyun-Ju;Hong, JungMin;Yoon, Hye-Jin;Yoon, Young-Ran;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.685-690
    • /
    • 2014
  • Osteoclasts are large polykaryons that have the unique capacity to degrade bone and are generated by the differentiation of myeloid lineage progenitors. To identify the genes involved in osteoclast development, we performed microarray analysis, and we found that carboxypeptidase E (CPE), a prohormone processing enzyme, was highly upregulated in osteoclasts compared with their precursors, bone marrow-derived macrophages (BMMs). Here, we demonstrate a novel role for CPE in receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. The overexpression of CPE in BMMs increases the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts and the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are key regulators in osteoclastogenesis. Furthermore, employing CPE knockout mice, we show that CPE deficiency attenuates osteoclast formation. Together, our data suggest that CPE might be an important modulator of RANKL-induced osteoclast differentiation.

Effect of Cynandione A of Cynanchi Wilfordii Radix in RANKL and Lipopolysaccharide-induced on Osteoclastogeneis in RAW 264.7 Cells (백하수오(Cynanchi Wilfordii Radix)의 Cynandione A가 RAW 264.7 세포에서 RANKL과 LPS로 유도된 파골세포형성에 대한 영향)

  • Hwang, Joon-Ho;Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Cynanchi wilfordii Radix roots have been utilized as traditional medicine for variety of diseases including diabetes mellitus, aging progression and scavenging free radicals, enhancing immunity, reducing high serum cholesterol, and anti-tumor activity. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of cynandione A on osteoclast cells. Thus, we was isolated cynandione A from Cynanchi wilfordii Radix roots and evaluated the effect of cynandione A on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. We found that cynandione A significantly inhibited osteoclast differentiation stimulated-RANKL in RAW 264.7 cells. Cynandione A conspicuously inhibited the mRNA and protein expression of matrix metallopeptidase 9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) in cynandione A treated with RANKL. Taken together, our results demonstrated that Cynanchi Wilfordii Radix may be useful treatment option of bone-related disease such as osteoporosis leads to fracture of bone and rheumatoid arthritis.

Can denosumab be a substitute, competitor, or complement to bisphosphonates?

  • Kim, Su Young;Ok, Hwoe Gyeong;Birkenmaier, Christof;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.30 no.2
    • /
    • pp.86-92
    • /
    • 2017
  • Osteoblasts, originating from mesenchymal cells, make the receptor activator of the nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in order to control differentiation of activated osteoclasts, originating from hematopoietic stem cells. When the RANKL binds to the RANK of the pre-osteoclasts or mature osteoclasts, bone resorption increases. On the contrary, when OPG binds to the RANK, bone resorption decreases. Denosumab (AMG 162), like OPG (a decoy receptor), binds to the RANKL, and reduces binding between the RANK and the RANKL resulting in inhibition of osteoclastogenesis and reduction of bone resorption. Bisphosphonates (BPs), which bind to the bone mineral and occupy the site of resorption performed by activated osteoclasts, are still the drugs of choice to prevent and treat osteoporosis. The merits of denosumab are reversibility targeting the RANKL, lack of adverse gastrointestinal events, improved adherence due to convenient biannual subcutaneous administration, and potential use with impaired renal function. The known adverse reactions are musculoskeletal pain, increased infections with adverse dermatologic reactions, osteonecrosis of the jaw, hypersensitivity reaction, and hypocalcemia. Treatment with 60 mg of denosumab reduces the bone resorption marker, serum type 1 C-telopeptide, by 3 days, with maximum reduction occurring by 1 month. The mean time to maximum denosumab concentration is 10 days with a mean half-life of 25.4 days. In conclusion, the convenient biannual subcutaneous administration of 60 mg of denosumab can be considered as a first-line treatment for osteoporosis in cases of low compliance with BPs due to gastrointestinal trouble and impaired renal function.

Inhibitory Effects of Water Extracts of Eucommiae Cortex and Psoraleae Semen Alone and in Combination on Osteoclast Differentiation and Bone

  • Park, Jin Soo;Park, Ga Young;Choi, Han Gyul;Kim, Seong Joung;Kim, June Hyun;park, Min Cheol;Kim, Yun Kyung;Han, Sang Yong;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.34 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate the effects of water extracts of Eucommiae cortex (EC), Psoraleae semen (PS), and their combination on receptor activator of nuclear factor-kappa-B ligand (RANKL)-induced osteoclast differentiation. Methods : We assayed the protein expression levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-Fos, mitogen-activated protein kinases (MAPKs), and ${\beta}-actin$ in cell lysates using western blotting. Similarly, mRNA expression levels of NFATc1, c-Fos, tartrateresistant acid phosphate (TRAP), and glyceraldehyde-3-phosphate dehydrogenase, spermatogeni (GAPDHS) from bone marrow macrophages (BMMs) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we determined the anti-osteoporotic effects of the water extracts of EC, PS, and their combination in a lipopolysaccharide (LPS)-induced bone-loss mouse model. Results : The in vitro data revealed showed that the combination of EC and PS extract showed a more remarkable inhibition of osteoclast differentiation than each herb did alone. The combination downregulated the induction of c-Fos, NFATc1, and TRAP by suppressing the phosphorylation of p38 and c-Jun N-terminal kinases (JNKs) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). Lastly, the in vivo data showed that PS reduced the LPS-induced bone erosion. Conclusion : The result of this study suggests that EC and PS could be potential therapeutic agents for bone loss diseases such as osteoporosis.

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

Inhibitory Effects of Achyranthis Bidentatae Radix on Osteoclast Differentiation and Bone Resorption (우슬의 파골세포 분화 억제와 골 흡수 억제효과)

  • Kim, Ju-Ho;Ki, Ji-Ye;Ann, Ji-Young;Park, Hye-Jung;Kim, Hyun-Ju;Kwak, Han-Bok;Oh, Jae-Min;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.25 no.1
    • /
    • pp.65-74
    • /
    • 2010
  • Objectives : Achyranthis Bidentatae Radix (ABR) has been used for treating of many symptoms especially osteoporosis and rheumatoid arthritis. In this study, we determined the effects of water extract of ABR in RANKL (Receptor Activator for Nuclear Factor $\kappa$ B Ligand)-induced osteoclast differentiation culture system. Methods : We assayed mRNA expression levels of NFATc1, c-Fos, TRAP, OSCAR, $FcR{\gamma}$, DAP12 and GAPDH in bone marrow macrophages (BMMs) treated with ABR. The protein expression levels of NFATc1, c-Fos, MAPKs and $\beta$-actin in cell lysates treated with ABR were analysed by Western blotting. In addition we determined the effects of water extract of ABR on LPS-induced bone-loss mouse. Results : Water extract of ABR showed remarkable inhibition on RANKL-treated osteoclast differentiation without cytotoxicity. ABR down-regulated the induction of c-Fos and NFATc1 by RANKL. ABR suppressed phosphorylation of JNK, p38 and I-${\kappa}B$. ABR rescued bone erosion by LPS induction in vivo study. Conclusions : These results demonstrate that ABR may be a useful remedy for curing of bone-loss disease such as osteoporosis.

Effect of Ssangwha-tang Fermented by Lactobacillus fermentum on Osteoclast Differentiation and Osteoporosis of Ovariectomized Rats (Lactobacillus fermentum으로 발효한 쌍화탕의 파골 세포 분화와 난소 적출한 랫트의 골다공증에 미치는 영향)

  • Shim, Ki-Shuk;Lee, Ji-Hye;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.1
    • /
    • pp.149-155
    • /
    • 2010
  • Objective : Ssangwha-tang is a traditional medicine formula widely prescribed for a decrease of fatigue after an illness in Korea. The aim of this study is to investigate the effect of Ssangwha-tang fermented by Lactobacillus fermentum (SF) on osteoclast differentiation in vitro and on bone metabolism of an ovariectomized rat in vivo. Methods : Tartrate-resistant acid phosphatase activity and staining were applied to evaluate the formation of osteoclasts. Ovariectomized rats were orally administrated with SF (30 ml/kg/day) for 12 weeks. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, triglyceride, phosphate, calcium levels were determined. Effect of SF on bone loss were studied by histological analysis and the measurement of bone mineral density. Results : SF significantly inhibited tartrate-resistant acid phosphatase activity and formation of osteoclasts in RAW264.7 cells stimulated by receptor activator for nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL). In addition, SF significantly decreased the level of triglyceride and increased the level of low-density lipoprotein. Moreover, the decrease of trabeculae of the femur was partially prevented in ovariectomized rats administrated with SF. Conclusions : SF treatment could prevent ovariectomy induced bone loss and its effects could be medicated by the inhibition of osteoclastogenesis.

Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats

  • Shim, Ki-Shuk;Lee, Ji-Hye;Ma, Choong-Je;Lee, Yoon-Hee;Choi, Sung-Up;Lee, Jae-Hoon;Ma, Jin-Yeul
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • Ssanghwa-tang (SHT) is a traditional Korean herbal medicine widely prescribed to decrease fatigue following an illness. The purpose of this study was to investigate the effects of SHT on osteoclast differentiation in vitro, and on bone loss in ovariectomized (OVX) rats in vivo. SHT significantly reduced the receptor activator for the nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP) activity, and multinucleated osteoclast formation in RAW264.7 cells without affecting cell viability. In addition, SHT significantly attenuated RANKL-induced mRNA expression levels of c-Src and cathepsin K. To examine the in vivo effect of SHT on OVX-induced bone loss in OVX rats, we administered SHT (0.6 g/kg BID) orally to OVX rats for 12 weeks. SHT administration significantly blocked OVX-induced decrease of femoral bone mineral density (BMD) and femoral trabeculae in OVX rats. In conclusion, these results suggest that SHT treatment effectively prevents OVX-induced bone loss, and this effect may result from its inhibitory effect on osteoclast differentiation.

Effect of Water Extract of Saussureae Radix in RANKL-induced Osteoclast Differentiation (파골세포 분화에 목향 물 추출물의 효과)

  • Lee, Myeung-Su;Kim, Jeong-Joong;Oh, Jae-Min;Choi, Min-Kyu;Song, Mi-Jin;Ahn, Yong-Hwan;Lee, Jeong-Hugh;Jeon, Byung-Hoon;Park, Kie-In;Jang, Sung-Jo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.516-520
    • /
    • 2011
  • Osteoporosis is social problem around the world, because fracture of old age may lead to critical medical condition. Osteoclast is a main target for prevention and treatment of osteoporosis due to their responsibility for bone resorption. Saussureae Radix has been known that has gastro-protective, bronchodilatory effect and has a anti-biotic effect. Saussureae Radix has been widely used in Oriental medicine. However, the effect of extract of Saussureae Radix in osteoclast differentiation remains unknown. Thus, we examined the effect of Saussureae Radix in receptor activator of nuclear factor-${\kappa}$B ligand (RANKL)-induced osteoclast differentiation. From the results of our study, Here we found that Saussureae Radix significantly inhibited osteoclast differentiation induced by RANKL. Saussureae Radix suppressed the activation of NF${\kappa}$B in bone marrow macrophages (BMMs) treated with RANKL. Also, Saussureae Radix significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Saussureae Radix greatly inhibited the protein expression of c-fos and NFATc1. especially in the case of NFATc1 expression, a master transcription factor of the differentiation of osteoclasts is very important step for osteoclastogenesis. These results demonstrate that Saussureae Radix may be useful treatment option of bone-related disease such as osteoporosis and rheumatoid arthritis.

Inhibitory Effects of Ssangbohwan on Osteoclast Differentiation and Bone Resorption (쌍보환 추출물의 파골세포 분화 억제와 골 흡수 억제효과)

  • Kim, Seong Joung;Lee, Jeong Ju;Kim, June Hyun;Jo, So Hyun;Park, Min Cheol;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.69-81
    • /
    • 2015
  • Purpose : The first purpose of this study is to find out whether the water extract of Rehmanniae Radix Preparat(RRP), Cuscutae Semen(CS) and their combination(Ssangbohwan, SBH) have the effect of suppressing Receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation. The second purpose of this study is to find out whether the water extract of RRP, CS and SBH have the effect of inhibiting osteoporosis in an osteoporosis model induced by lipopolysaccharide(LPS). Methods : After promoting differentiation of osteoclasts by treating the RANKL, we observed the effect by the administration of RRP, CS and SBH. In addition, by means of Reverse transcription polymerase chain reaction(RT-PCR), we assayed mRNA expression levels of NFATc1, c-Fos, TRAP and GAPDHS(Glyceraldehyde-3-phosphate dehydrogenase, spermatogeni) from bone marrow macrophages(BMMs). Similarly, the protein expression levels of NFATc1 (Nuclear factor of activated T-cells, cytoplasmic1), C-Fos, MAPKs(Mitogen-activated protein kinases) and ${\beta}$-actin in cell lysates were analyzed by means of Western Blotting. Finally, we determined the anti-osteoporotic effects of RRP, CS and SBH, through the use of Lipopolysaccharide-induced bone-loss mouse. Results : RRP, CS and SBH showed remarkable inhibitive effect on RANKL-treated osteoclast differentiation without cytotoxicity. SBH inhibited the phosphorylation of p38, Jun N-terminal kinases(JNK), and I-${\kappa}B$ and down-regulated the induction of c-Fos and NFATc1 by RANKL. RRP, CS suppressed degradation of I-${\kappa}B$, but it did not affect c-Fos and NFATc1 by RANKL. Lastly, in vivo data showed that RRP and SBH prevented bone erosion by LPS treatment. Conclusions : These results demonstrate SBH can be effective remedy for bone-loss diseases such as osteoporosis.