• Title/Summary/Keyword: receiver-based rate control

Search Result 73, Processing Time 0.024 seconds

A Highly Expandable Forwarded-Clock Receiver with Ultra-Slim Data Lane using Skew Calibration by Multi-Phase Edge Monitoring

  • Yoo, Byoung-Joo;Song, Ho-Young;Chi, Han-Kyu;Bae, Woo-Rham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.433-448
    • /
    • 2012
  • A source-synchronous receiver based on a delay-locked loop is presented. It employs a shared global calibration control between channels, yet achieves channel expandability for high aggregate I/O bandwidth. The global calibration control accomplishes skew calibration, equalizer adaptation, and phase lock of all the channels in a calibration period, resulting in the reduced hardware overhead and area of each data lane. In addition, the weight-adjusted dual-interpolating delay cell, which is used in the multiphase DLL, guarantees sufficient phase linearity without using dummy delay cells, while offering a high-frequency operation. The proposed receiver is designed in the 90-nm CMOS technology, and achieves error-free eye openings of more than 0.5 UI across 9-28 inch Nelco4000-6 microstrips at 4-7 Gb/s and more than 0.42 UI at data rates of up to 9 Gb/s. The data lane occupies only $0.152mm^2$ and consumes 69.8 mW, while the rest of the receiver occupies $0.297mm^2$ and consumes 56.0 mW at the 7- Gb/s data-rate and supply voltage of 1.35 V.

Loss-RTT based Differentiated Rate Adaptation Algorithm (Loss-RTT 기반 차등 전송률 조절 알고리즘에 관한 연구)

  • 김지언;정재일
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • TCP is ill-suited to real-time multimedia applications. Its bursty transmission, and abrupt and frequent wide rate fluctuations cause high delay jitters and sudden quality degradation of multimedia applications. Deploying non congestion controlled traffic results in extreme unfairness towards competing TCP traffic. Therefore, they need to be enhanced with congestion control schemes that not only am at reducing loss ratios and improve bandwidth utilization but also are fair towards competing TCP connections. This paper proposes a differentiated rate adaptation algorithm based on loss and round trip time. Rate in a sender quickly responds to loss ratio and holds steady state. Additionally, this algorithm reduces loss ratio by loss prediction in a receiver.

  • PDF

Power allocation for full-duplex NOMA relaying based underlay D2D communications

  • Li, Song;Li, Shuo;Sun, Yanjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.16-33
    • /
    • 2019
  • In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.

Performance Test of Broadcast-RTK System in Korea Region Using Commercial High-Precision GNSS Receiver for Autonomous Vehicle

  • Ahn, Sang-Hoon;Song, Young-Jin;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.351-360
    • /
    • 2022
  • Autonomous vehicles require precise knowledge of their position, velocity and orientation in all weather and traffic conditions in any time. And, these information is effectively used for path planning, perception, and control that are key factors for safety of vehicle driving. For this purpose, a high precision GNSS technology is widely adopted in autonomous vehicles as a core localization and navigation method. However, due to the lack of infrastructure as well as cost issue regarding GNSS correction data communication, only a few high precision GNSS technology will be available for future commercial autonomous vehicles. Recently, a high precision GNSS sensor that is based on a Broadcast-RTK system to dramatically reduce network maintenance cost by utilizing the existing broadcasting network is released. In this paper, we present the performance test result of the broadcast-RTK-based commercial high precision GNSS receiver to test the feasibility of the system for autonomous driving in Korea. Massive measurement campaigns covering of Korea region were performed, and the obtained measurements were analyzed in terms of ambiguity fixing rate, integer ambiguity loss recovery, time to retry ambiguity fixing, average correction information update rate as well as accuracy in comparison to other high precision systems.

Two Flow Control Techniques for Teleconferencing over the Internet (인터넷상에서 원격회의를 위한 두 가지 흐름 제어 기법)

  • Na, Seung-Gu;Go, Min-Su;An, Jong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.975-983
    • /
    • 1999
  • 최근 네트워크의 속도가 빨라지고 멀티미디어 데이터를 다루기 위한 기술들이 개발됨에 따라 많은 멀티미디어 응용 프로그램들이 인터넷에 등장하고 있다. 그러나 이들 응용프로그램들은 수신자에게 전송되는 영상.음성의 품질이 낮기 때문에 기대만큼 빠르게 확산되지 못하고 있다. 영상.음성의 품질이 낮은 이유는 현재 인터넷이 실시간 응용프로그램이 요구하는 만큼 빠르고 신뢰성 있게 데이터를 전송할 수 없기 때문이다. 현재 인터넷의 내부구조를 바꾸지 않고 품질을 높이기 위해 많은 연구들이 진행되고 있는데 그 중 하나는 동적으로 변화하는 인터넷의 상태에 맞게 멀티캐스트 트래픽의 전송율을 조절하는 종단간의 흐름제어이다. 본 논문은 기존의 흐름제어 기법인 IVS와 RLM의 성능을 개선시키기 위한 두 가지 흐름제어 기법을 소개한다. IVS는 송신자가 주기적으로 측정된 네트워크 상태에 따라 전송율을 일정하게 조절한다. 송신자가 하나의 데이타 스트림을 생성하는 IVS와는 달리 RLM에서는 송신자가 계층적 코딩에 의하여 생성된 여러개의 데이타 스트림을 전송하고 각 수신자는 자신의 네트워크 상태에 맞게 데이타 스트림을 선택하는 기법이다. 그러나 IVS는 송신자가 전송율을 일정하게 증가시키고, RLM은 각자의 네트워크 상태를 고려하지 않고 임의의 시간에 하나 이상의 데이타 스트림을 받기 때문에 성능을 저하시킬 수 있다. 본 논문에서는 TCP-like IVS와 Adaptive RLM이라는 두 가지 새로운 기법을 소개한다. TCP-like IVS는 송신자가 전송율을 동적으로 결정하고, Adaptive RLM은 하나 이상의 데이타 스트림을 받기 위해 적당한 시간을 선택할 수 있다. 본 논문에서는 시뮬레이션을 통해 여러 가지 네트워크 구조에서 두 가지 방식이 기존의 방식에 비하여 더욱 높은 대역폭 이용율과 10~20% 정도 적은 패킷손실율을 이룬다는 것을 보여준다.Abstract Nowadays, many multimedia applications for the Internet are introduced as the network gets faster and many techniques manipulating multimedia data are developed. These multimedia applications, however, do not spread widely and are not fast as expected at their introduction time due to the poor quality of image and voice delivered at receivers. The poor quality is mainly attributed to that the current Internet can not carry data as fast and reliably as the real-time applications require. To improve the quality without modifying the internal structure of the current Internet, many researches are conducted. One of them is an end-to-end flow control of multicast traffic adapting the sending rate to the dynamically varying Internet state. This paper proposes two flow-control techniques which can improve the performance of the two conventional techniques; IVS and RLM. IVS statically adjusts the sending rate based on the network state periodically estimated. Differently from IVS in which a sender produces one single data stream, in RLM a sender transmits several data streams generated by the layered coding scheme and each receiver selects some data streams based on its own network state. The more data streams a receiver receives, the better quality of image or voice the receiver can produce. The two techniques, however, can degrade the performance since IVS increases its sending rate statically and RLM accepts one more data stream at arbitrary time regardless of the network state respectively. We introduce two new techniques called TCP-like IVS and Adaptive RLM; TCP-like IVS can determine the sending rate dynamically and Adaptive RLM can select the right time to add one more data stream. Our simulation experiments show that two techniques can achieve better utilization and less packet loss by 10-20% over various network topologies.

Localization Algorithm for a Mobile Robot using iGS (iGS를 이용한 모바일 로봇의 실내위치추정 알고리즘)

  • Seo, Dae-Geun;Cho, Sung-Ho;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.242-247
    • /
    • 2008
  • As an absolute positioning system, iGS is designed based on ultrasonic signals whose speed can be formulated clearly in terms of time and room temperature, which is utilized for a mobile robot localization. The iGS is composed of an RFID receiver and an ultra-sonic transmitter, where an RFID is designated to synchronize the transmitter and receiver of the ultrasonic signal. The traveling time of the ultrasonic signal has been used to calculate the distance between the iGS system and a beacon which is located at a pre-determined location. This paper suggests an effective operation method of iGS to estimate position of the mobile robot working in unstructured environment. To expand recognition range and to improve accuracy of the system, two strategies are proposed: utilization of beacons belonging to neighboring blocks and removal of the environment-reflected ultrasonic signals. As the results, the ubiquitous localization system based on iGS as a pseudo-satellite system has been developed successfully with a low cost, a high update rate, and relatively high precision.

Adaptive FEC and Rate Adaptation for High-speed Transport (고속 전송을 위한 적응형 FEC 및 전송률 제어)

  • Chang Hye young;Kim Jong won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3B
    • /
    • pp.85-94
    • /
    • 2005
  • In this paper, we propose a reliable high-speed UDP-based media transport with an adaptive error control. The proposed adaptive transport scheme controls the amount of redundancy by monitoring the network in order to adapt to network fluctuations efficiently. The feedback of receiver enables the sender to be aware of current reception status (i.e., rate and type of packet loss) and to estimate the expected network status. Based on this, the proposed transport attempts to enable reliable transport by adaptively controlling the amount of both whole sending rate and the ratio for adaptive FEC code. Experiment with high-speed network has been conducted to verify the performance of the proposed system that demonstrates the enhanced reliability of the proposed transport at the speed of up to several hundred Mbps.

Interference Signal Control using Neural Network in Digital Mobile Communication (이동 무선 통신에서 신경망을 이용한 간섭 신호 제어)

  • 나상동;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.109-116
    • /
    • 1998
  • In this paper, a back propagation neural network teaming algorithm based on the complex multilyer perceptron is represented for suppressing narrowband interference of the received signals in DS-SS mobile communication system. We proposed neural network adaptive correlator(NNAC) which has fast convergence rate and good performance with combining back propagation neural network and the receiver of DS-SS. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow-band interference and the co-channel interference.

  • PDF

A NNAC using narrowband interference signal control in cellular mobile communication systems (셀룰라 이동 통신에서 NNAC를 이용한 협대역 간섭 신호 제어)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.542-546
    • /
    • 2009
  • In this Paper, a back propagation neural network learning algorithm based on the complex multilayer perceptron is represented for controling and detecting interference of the received signals in cellular mobile communication system. We proposed neural network adaptive correlator which has fast convergence rate and good performance with combining back propagation neural network and the receiver of cellular. We analyzed and proved that NNAC has lower bit error probability than that of traditional RAKE receiver through results of computer simulation in the presence of the tone and narrow - band interference and the co-channel interference.

A New Pre-Emphasis Driver Circuit for a Packet-Based DRAM (패킷 방식의 DRAM에 적용하기 위한 새로운 강조 구동회로)

  • Kim, Jun-Bae;Kwon, Oh-Kyong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.176-181
    • /
    • 2001
  • As the data rate between chip-to-chip gets high, the skin effect and load of pins deteriorate noise margin. With these, noise disturbances on the bus channel make it difficult for receiver circuits to read the data signal. This paper has proposed a new pre-emphasis driver circuit which achieves wide noise margin by enlarging the signal voltage range during data transition. When data is transferred from a memory chip to a controller, the output boltage of the driver circuit reaches the final values through the intermediate voltage level. The proposed driver supplies more currents applicable to a packet-based memory system, because it needs no additional control signal and realizes very small area. The circuit has been designed in a 0.18 ${\mu}m$ CMOS process, and HSPICE simulation results have shown that the data rate of 1.32 Gbps be achieved. Due to its result, the proposed driver can achieved higher speed than conventional driver by 10%.

  • PDF