• Title/Summary/Keyword: rebound force

Search Result 34, Processing Time 0.025 seconds

Design and Analysis of Magneto-Rheological Damper Using Permanent Magnet (영구자석을 이용한 전단모드 MR 댐퍼 설계 및 해석)

  • Kim, Wan Ho;Suresh, Kaluvan;Park, Jhin Ha;Choi, Sang Min;Park, Chun-Yong;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.443-448
    • /
    • 2016
  • A novel Permanent Magnet based Magneto Rheological (PM-MR) damper is proposed in this paper. The principle of proposed MR damper is achieved by designing a linearly varying magnetization area with-respect to the movable permanent magnetic based piston setup. Nowadays, commercially available MR damper uses electromagnetic coils for generating the variable magnetic fields corresponding to the variable damping force. The amount of magnetic field produced by the electromagnetic coils are depends on the biasing current of voltage source. The key enabling concept of the proposed MR damper is to replace the electromagnetic coils and the voltage sources by utilizing the variable area based permanent magnetic piston setup. The proposed unique design structure of PM-MR damper has an increasing shear mode damping force with the piston movement in both jounce and rebound motion. In this research, analytical model of the proposed structure is derived and the structural design of proposed concept is verified using numerical CAD tool. As a result, the damping force is increase when piston movement in both jounce and rebound motion.

Can a Skier Make a Circular Turn without any Active Movement?

  • Youn, Sun-Hyun
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1410-1419
    • /
    • 2018
  • A skier's motion was analyzed by a simple model consist of point mass m and a single rod connected to a single ski plate. We studied the conditions for the stable ski turn as functions of the linear velocity and the radius of the turn. The solutions for the stable ski turn in our model do not require any extra skier's movement to complete a stable circular turn. The solution may then give the skier the most comfortable skiing method without any active movement to control the ski. The generalized force supporting the point mass from the ski plate was calculated. We obtained the force from the ground (rebound force) without any geometrical structure of the ski plate. Adding an active movement to the direction of the ski plate, the conditions for the stable ski turn were also analyzed. Our result gives some insight for the skier who wants to develop technique.

Evidence for Adenosine Triphosphate (ATP) as an Excitatory Neurotransmitter in Guinea-Pig Gastric Antrum

  • Kang, Tong-Mook;Xu, Wenxie;Kim, Sung-Joon;Ahn, Seung-Cheol;Kim, Young-Chul;So, In-Suk;Park, Myoung-Kyu;Uhm, Dae-Yong;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.165-174
    • /
    • 1999
  • We explore the question of whether adenosine 5'-triphosphate (ATP) acts as an excitatory neurotransmitter in guinea-pig gastric smooth muscle. In an organ bath system, isometric force of the circular smooth muscle of guinea-pig gastric antrum was measured in the presence of atropine and guanethidine. Under electrical field stimulation (EFS) at high frequencies (>20 Hz), NO-mediated relaxation during EFS was followed by a strong contraction after the cessation of EFS (a 'rebound-contraction'). Exogenous ATP mimicked the rebound-contraction. A known $P_{2Y}-purinoceptor$ antagonist, reactive blue 2 (RB-2), blocked the rebound-contraction while selective desensitization of $P_{2Y}-purinoceptor$ with ${\alpha},{\beta}-MeATP$ did not affect it. ATP and 2-MeSATP induced smooth muscle contraction, which was effectively blocked by RB-2 and suramin, a nonselective $P_2-purinoceptor$ antagonist. Particularly, in the presence of RB-2, exogenous ATP and 2-MeSATP inhibited spontaneous phasic contractions, suggesting the existence of different populations of purinoceptors. Both the rebound-contraction and the agonist-induced contraction were not inhibited by indomethacin. The rank orders of agonists' potency were 2-MeSATP > ATP ${ge}$ UTP for contraction and ${\alpha},{\beta}-MeATP\;{\ge}\;{\beta},{\gamma}-MeATP$ for inhibition of the phasic contraction, that accord with the commonly accepted rank order of the classical $P_{2Y}-purinoceptor$ subtypes. Electrical activities of smooth muscles were only slightly influenced by ATP and 2-MeSATP, whereas ${\alpha},{\beta}-MeATP$ attenuated slow waves with membrane hyperpolarization. From the above results, it is suggested that ATP acts as an excitatory neurotransmitter, which mediates the rebound-contraction via $P_{2Y}-purinoceptor$ in guinea-pig gastric antrum.

  • PDF

Relaxative Effect of Transmural Nerve Stimulation via ${\beta}$-adrenergic Nerve on the Isolated Uterine Smooth Muscle Motility of Pigs (돼지 적출 자궁 평활근의 운동성에 있어서 transmural nerve stimulation에 대한 ${\beta}$-adrenergic 신경의 이완작용)

  • Kim, Joo-Heon;Jeon, Jae-Cheul;Rho, Gyu-Jin;Hong, Yong-Geun;Choe, Sang-Yong
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • The effects of transmural nerve stimulation induced releasing neurotransmitters on the changes of swine uterine smooth muscle motility were examined by polygraph through isometric force transducer. The frequency dependent relaxation and rebound contraction were revealed on precontraction with histamine by transmural nerve stimulation. The rebound contraction by transmural nerve stimulation was inhibited by nonselective ${\alpha}$-adrenergic receptor antagonist, phentolamine, and the relaxation by transmural nerve stimulation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol. The relaxation induced by nonselective ${\beta}$-adrenergic receptor agonist, isoproterenol on precontraction with histamine were the dose dependent manner and this relaxation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol in isolated uterine smooth muscle of pig. These results suggest that endogenous neurotransmitters on smooth muscle relaxation was influenced by ${\beta}$-adrenergic receptor in swine.

Dynamic Characteristics of Semi-Active Shock Absorber Using Electrorheological Fluid (ER 유체를 이용한 반능동 완충장치의 동적 특성)

  • Kim, Do-Hyung;Cho, Ki-Dae;Jung, Yong-Hyun;Lee, In;Oshima, Nobuo;Fukuda, Takehito
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-21
    • /
    • 2001
  • Electrorheological(ER) fluid is a kind of smart material with variable shear stress and dynamic viscosity under various electric field intensity. Electric field can control the damping characteristics of ER damper. The objective of this study is the analysis of the performance of ER damper and its application to shock absorber. Idealized nonlinear Bingham plastic shear flow model is used to predict the velocity profile between electrodes. Cylindrical dashpot ER damper with moving electrode is constructed and tested under various electric fields. The analytic and experimental results for damping force are compared and discussed. Drop test system using ER damper is prepared to identify transient vibration characteristics. The rebound is eased as the applied electric field increases. When semi-active control algorithm is applied, rebound phenomenon disappears and vibration energy level decays faster than the case of zero electric field.

  • PDF

A Study on Mechanical Properties of Acrylonitrile Butadiene Rubber Composites

  • Jung, Eugene;Pyo, Kyeong-Deok;Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.280-286
    • /
    • 2017
  • The mechanical and dynamic properties according to the content of filler, plasticizer, and crosslinking agent of rubber composites for Lipseal were measured in this study. The mechanical properties of the composite including the silane coupling agent and silica were found to be superior to those of the composite containing carbon black. It was found that the rebound resilience characteristics were influenced by the crosslink density of sulfur rather than the filler or plasticizer. In the case of recovery, it was confirmed that the elastic restoring force improved in the compression deformation condition and recovery increased as the crosslinking density increased. The rubber composite for Lipseal of this study is expected to improve the manufacturing technology of the rubber composite which can implement the optimum function for recognizing the performance such as oil resistance, durability and compression set.

A Study on Variation of State Matrix to Improve the Unloading Performance (언로딩 성능향상을 위한 서스펜션 상태행렬 변화에 대한 연구)

  • Lee, Young-Hyun;Kim, Ki-Hoon;Kim, Seok-Hwan;Lee, Yong-Eun;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.618-621
    • /
    • 2008
  • Most hard disk drives that apply the ramp load/unload technology unload the heads at the outer edge of the disk while the disk is rotating. During the unloading process, slider-disk contacts may occur by lift-off force and rebound of the slider. The main issue of this paper is to prevent the slider-disk contact by changing the state matrix. Because the state matrix is related to the suspension and slider, to change the state matrix means the structural change of the suspension and slider. We investigate influence for variation of the state matrix components and analyze the relation between the state matrix and the suspension/slider.

  • PDF

A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal (충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구)

  • Son, Moorak;Choi, Yoonseo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.5-9
    • /
    • 2019
  • This paper is to provide the results of a pilot study of the usability and possibility of impact force response signal induced from impacting an object for the assessment of compressive strength of various materials (rock, concrete, wood, etc.) nondestructively. For this study, a device was devised for impacting an object and measuring the impact force. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Wood and rock test specimens for different strengths were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total impact force signal energy which is assessed from integrating the impact force response signal induced from impacting an object.

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

Validity of Ground Reaction Forces during Gait and Sit-to-Stand using the Nintendo Wii Balance Board in Healthy Subjects (Wii Balance Board를 이용한 Sit-to-Stand와 보행시 지면반발력의 타당도 분석)

  • Jeong, Yu-Jin;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.4
    • /
    • pp.85-92
    • /
    • 2016
  • PURPOSE: A good, valid, and feasible tool for evaluating sit to stand (STS) is needed to help clinicians quantify the STS ability of stroke patients and people with balance disorders. The purpose of this study was to evaluate the concurrent validity of the Nintendo Wii Balance Board (WBB) and a force plate during STS and gait. METHODS: Seventeen healthy adults performed five trials of STS and gait on the WBB placed on the force plate. The force plate and the WBB were compared in regard to center of pressure (COP) and ground reaction force (GRF) data that were collected simultaneously. The variables used for analysis were time (s), integral summation (%), COP path length (mm), COP x range, and COP y range, all of which were measured for both tasks. Counter (%), peak (%), and rebound (%) were analyzed for STS, and $1^{st}$ peak (%), min peak (%), and 2nd peak (%) were analyzed for gait. The concurrent validity was analyzed using an intraclass correlation coefficient (ICC) and a standard error of measurement (SEM) with a 95% confidence interval. RESULTS: The concurrent validity of the WBB for STS ranged from fair to good (ICC=.701~.994, SEM=.029~3.815). The concurrent validity for gait was good (ICC=.869 ~.989, SEM=.007~2.052) aside from path length and x and y ranges of COP (ICC=-.150~.371, SEM=3.635~4.142). CONCLUSION: The GRF of the WBB has a good validity for STS and gait analysis. The WBB is remarkably portable, easy to use, and convenient for clinically assessing STS and gait.