• Title/Summary/Keyword: rebar quantity

Search Result 37, Processing Time 0.019 seconds

Basic study about Automatic Rebar Quantity Estimation Integrated with Structural Design Information (구조설계정보 통합 관리에 의한 철근 물량 산출 자동화 기초 연구)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.109-110
    • /
    • 2015
  • Estimation of rebar quantity may be used as an index to evaluate the economic feasibility of structural designs. However, when using the software to estimate the rebar quantity, there may be some limitations such as data loss caused by human errors and estimation delays caused by increased input time, since the information on arrangement of rebar is inserted manually. To solve the problems of such quantity estimation software, it is necessary to develop a method on automatic input/output of structural design information for quantity estimation and an algorithm for accurate estimation of rebar quantity. The purpose of this study is to improve the existing rebar quantity estimation by connecting with the database on information related to rebar estimation and the algorithm for rebar estimation, in order to develop an algorithm to estimate an accurate, net rebar quantity. The study result can be used as basic data for development of software for efficient structural designs and automatic framework estimation of buildings.

  • PDF

Automation of Rebar Quantity Estimation in the Detailed Design Stage Using BIM Model Properties - Focused on the Calculation of Column Reinforcement Quantity - (BIM모델 속성정보를 활용한 상세설계단계에서의 철근 수량산출 자동화 방안 - 기둥 철근 수량산출 중심으로 -)

  • Lee, Ha-Neul;Yun, Seok-Heon
    • Journal of KIBIM
    • /
    • v.14 no.3
    • /
    • pp.13-21
    • /
    • 2024
  • This study aims to simplify the rebar quantity estimation process during the detailed design stage of buildings by addressing identified issues in the existing rebar quantity estimation process and establishing a BIM-based simplification method. To validate the applicability of the proposed method, it was applied to a case study of 'K' High School, with the results compared to rebar quantities from shop drawings to assess usability in real projects. It showed an error rate of 1.4% for SHD22S and 2.63% for HD10 among the types of rebar used in the case model. SHD22S, used as the main rebar in the columns, exhibited this error due to differences in the calculation method for splice and anchorage lengths. HD10, used as stirrup rebar in the columns, showed errors due to the omission of hook length considerations in the simplified estimation formula. Although these discrepancies resulted in cumulative errors of 10 to 20 meters, the error rates of 1.4% and 2.63% respectively fall within the generally accepted rebar overage rate of 5%, suggesting that this method is sufficiently accurate for quantity estimation during the detailed design stage. This study presents a method for efficiently estimating rebar quantities based on BIM during the detailed design stage. While traditional 2D quantity estimation and BIM-based methods often suffer from inefficiencies due to repetitive tasks and high modeling complexity, the proposed method assumes BIM models at LOD200, which are less complex and automate most of the structural information required for rebar quantity estimation, thereby reducing repetitive tasks. However, to further minimize errors, especially those related to hook and anchorage length calculations, additional research is needed to refine the estimation process and expand its applicability to the entire building's rebar quantity estimation.

Considerations When Quantity Take-Off of Rebar Based on the BIM Model (BIM Model 기반 철근 수량산출 시 고려사항)

  • Jeong, Seo-Hee;Kim, Ju-Yong;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.73-74
    • /
    • 2023
  • The purpose of this study is to derive the cause of the quantity difference and present the considerations when take-off rebar quantity based on BIM model by comparing the quantity of rebar based on BIM model with 2D drawing. This research was limited to take-off the quantity of rebars in the building frame work, and after take-off the quantity of rebars by 3D modeling the 2D drawing of the target building with Revit, the quantity difference was compared with 2D-based software. Therefore, when take-off the quantity of rebars based on the BIM model, instead of take-off the existing 2D-based quantity premium proportion, according to general structural consider development length, lap splice length, covering thickness, reinforcing bars and spacing. In the future, this study is expected to contribute to improving the accuracy of BIM-based frame construction quantity take-off.

  • PDF

Crafting an Automated Algorithm for Estimating the Quantity of Beam Rebar

  • Widjaja, Daniel Darma;Kim, Do-Yeong;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.485-496
    • /
    • 2023
  • Precise construction cost estimation is paramount to determining the total construction expense of a project prior to the initiation of the construction phase. Despite this, manual quantification and cost estimation methods, which continue to be widely used, may result in imprecise estimation and subsequent financial loss. Given the fast-paced and efficiency-demanding nature of the construction industry, trustworthy quantity and cost estimation is essential. To mitigate these obstacles, this research is focused on establishing an automated quantity estimation algorithm, particularly designed for the main rebar of beams which are recognized for their complicated reinforcement configurations. The exact quantity derived from the proposed algorithm is compared to the manually approximated quantity, reflecting a variance of 10.27%. As a result, significant errors and impending financial loss can be averted. The implementation of the findings from this research holds the potential to significantly assist construction firms in quickly and accurately estimating rebar quantities while adhering strictly to applicable specifications and regulatory requirements.

Establishment of Rebar Quantity Estimation in BIM-based Initial Design Phase (BIM기반 초기 설계 단계 철근 물량 산출 프로세스 구축)

  • Song, Chi-Ho;Kim, Chee-Kyeong;Lee, Si Eun;Choi, Hyunchul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.447-454
    • /
    • 2016
  • In the meantime, looking at the present status of how to estimationte the quantity of rebar based on 3D BIM getting the limelight in these days, commercial BIM tools provide rebar modeling functions however it takes a vast amount of modeling time for modeling of rebar in use of that function hence there is no BIM software at present for practical use. Therefore, in this study, we organized and presented a practical rebar quantity estimationtion process in BIM-based design work-site and intended to develop a program named Rebar Automatic Arrangement Program - hereinafter called RAAP - which enables automatic rebar arrangement based on much more precise cross-sectional information of bars in column, beam, slab and wall than the one from existing 2D method under the conditions without any cross-sectional information in the initial design phase. In addition, we intended to establish rebar quantity estimationtion process in the initial design phase through interworking of modeling & quantity estimationtion functions in consideration of joint, anchoring length of BuilderHUB as a BIM software with RAAP. The results from this study are practical in developing a technology that is able to estimationte quantity with more improved reliability than the one from existing 2D-based methods with less effort when the quantity of framework is estimationted in the uncompleted state of cross-sectional design for structural members in the initial design phase of a construction project. And it is expected that it could be utilized as a basic study from which a reasonable quantity estimationtion program can be established in the initial design phase.

Development of an Algorithm for the Automatic Quantity Estimation of Wall Rebar

  • Kim, Do-Yeong;Suh, Sangwook;Kim, Sunkuk;Lwun Poe Khant
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.83-94
    • /
    • 2023
  • In order to devise a rebar usage optimization algorithm, it is necessary to calculate the exact rebar length and revise the arrangement of rebars into special lengths. However, the process of rearranging numerous rebars and manually calculating their quantities is time-consuming and requires significant human resources. To address this challenge, it is necessary to develop an algorithm that can automatically estimate the length of rebars and calculate their quantities. This study aims to create an automatic estimation algorithm that improves work efficiency while ensuring accurate and reliable calculations of rebar quantities. The algorithm considers various factors such as concrete cover, hook length, development length, and lapping length, mandated by the building codes, to calculate the quantity of rebars for wall structures. The effectiveness of the proposed method is validated by comparing the rebar quantities generated by the algorithm with manually calculated quantities, resulting in a difference rate of 1.14% for the hook case and 1.37% for the U-bar case. The implementation of this method enables fast and precise estimation of rebar quantities, adhering to relevant regulatory codes.

A Study on the Effective Calculation of Rebar QTO in the Early Design Phase through the Application of BIM Model (BIM 모델 활용을 통한 초기설계단계에서의 효율적인 철근물량 산출 방안 연구)

  • Lee, Jae-Cheol
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.145-152
    • /
    • 2019
  • In this study, rebar QTO(Quantity Take-Off) was quickly produced from the BIM model prepared by Revit in the early design phase, and the available premium rates were quantitatively presented. For this purpose, the amount of rebar calculated using the BuilderHub, which specializes in calculating rebar QTO, was analyzed according to various factors such as member type, rebar diameter, building size, item type, and order length, and the effect of each factor on the rebar QTO was determined. In addition, the BIM model generated on Revit was used to establish parameters and processes required to produce rebar QTO, and proposed a rebar premium rate and a stirrup/hoop premium rate based on the BuilderHub output results. Through this study, it is expected that a rapid and efficient comparative evaluation of rebar QTO will be possible according to various structural design alternatives in the early design phase.

A Study on the Actual Condition Analysis and Improvement of Rebar Work in Korean Building Construction (국내 철근공사 실태분석 및 개선방안에 관한 연구)

  • Park, U-Yeol;Kim, Gwang-Hui;Gang, Gyeong-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.83-91
    • /
    • 2004
  • With labor shortage and high-wage era, the construction cost is rising and the construction business is dull, demanding the construction environment of Korea to raise profitability through major cost savings and rationalization of construction management. However, although reinforcing bar(rebar) work, which greatly effects the building's safety, endurance, and construction time, is an important phase in construction, it holds serious problem of quality and productivity deterioration due to its characteristic of intensive-labor and maintaining of old work methods resulting in poor management, and costs increase. Therefor in this study to investigate current situation and problems of rebar work and to find methods of betterment, a survey was conducted to site engineers and individuals in division of cost estimate of domestic construction company. The survey questions were on the subjects of (1) calculating rebar quantity, (2) ordering and procurement, (3) rebar cutting and bending, and (4) rebar work management. Method of improvement was sought by analyzing the results of the survey

The Study On The Actual Condition Of Rebar Work In Korean Building Construction (국내 건설 현장의 철근공사 실태조사에 관한 연구)

  • 이응균;박우열;강경인
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.133-138
    • /
    • 2002
  • Rebar work takes up big proportion in a construction work. The current process of purchasing, cutting and election, and working of rebar induces a lot of loss in rebar. This study is focused on analyzing the problem and the present condition of the process from the calculating of rebar quantifies to the actual constructional stage through surveying those who have experience in the estimation department, or the construction site of a domestic construction company. Many reform measures such as diversification of standard(i.e., 8-meter)bar, calculation of rebar quantities and construction according to the rebar election drawing, expansion of accuracy in layout plan, thoroughness in examination of layout plan in advance, utilization of the worked material, systemization of rebar control(management), and a shift in attitude of the field(site) manager were proposed as the result of the survey.

  • PDF

A Basic Study of Automatic Estimation Algorithm on the Rebar Length of Beam by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 보 철근길이 자동 산장 기초 연구)

  • Widjaja, Daniel Darma;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.167-168
    • /
    • 2023
  • Construction of reinforced concrete structures required massive amounts of concrete and steel rebar. The current procedure to estimate the quantity of rebar requires tedious and time-consuming manual labor. Consequently, this circumstance made the engineers vulnerable to error and mistake, which led to the rebar waste. No system that is capable of automatically calculating rebar length has yet been developed Thus, this study proposes a preliminary investigation of automatic rebar length estimation of beam element by using BIM-based shape codes drawn in Revit. Beam is chosen due to its complexity in the rebar arrangement. In addition, the development of this study could assist engineers on the construction site and effectively contribute to the minimization of rebar waste in the future.

  • PDF