• Title/Summary/Keyword: rearing tank

Search Result 79, Processing Time 0.022 seconds

Tank colours do not change the effects of extreme temperatures on the productive parameters, but skeletal deformities of golden trevally

  • Van Manh Ngo;Khuong V. Dinh;Bich Lien Chau;Diep Minh Luc
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.8
    • /
    • pp.461-469
    • /
    • 2023
  • The objective of this study was to evaluate how the tank colours may change the effects of extreme temperature on the survival, growth, and quality of juvenile golden trevally (Gnathanodon speciosus). The experiment was set up with fifteen treatments of five tank colours (blue, red, yellow, grey, and white) and three temperatures (30℃, 32℃, 34℃) with three replications. Fish performance was assessed for four weeks. The results showed that tank colours and elevated temperatures affected the quality of golden trevally juveniles. The survival and growth rate of fish tend to decrease gradually, but the deformation rate of fish tended to increase in the order of tank colours: red, yellow > grey, blue, and white. The growth and survival rate of fish gradually decreased when the rearing temperature increased from 30℃ to 34℃ and this effect was independent of tank colors. Importantly, the deformation rate increased under elevated temperature, particularly in blue and white tanks with potential long-term effects. It is, therefore, not recommended to use blue and white tanks for rearing the golden trevally juveniles, particularly during extremely high temperatures from heatwave events.

Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System (유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거)

  • Choi, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Design and Development of Integrated Recirculating Aquaculture System (순환 여과식 양식 시스템의 설계 및 개발)

  • SUH Kuen-Hack;KIM Byong-Jin;JEON Im Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.70-76
    • /
    • 2001
  • An integrated recirculating aquaculture system suitable to our country's situation was designes and developed, The integrated recirculating aquaculture system consisting of a double drain type rearing tank of the $2.5 m^3$, a sedimentation tank for removal of settleable solids, a floating bead filter for the removal of suspended solids, a foam separator for removal of fine particles and a rotating biological contactor for the nitrification was designed and manufactured. The integrated recirculating aquaculture system was stocked with nile tilapia (Oreochromis niloticus) at $2\%$ rearing density for 2 weeks. Feed coefficient was 1.4 and average daily growth rate was $0.64\%$ in the system for 2 weeks.

  • PDF

Indoor Tank Culture of the Abalone Haliotis discus hannai I . Effects of tank shape and stocking density on the growth of young abalone (전복 Haliotis discus hannai의 육상수조사육에 관한 연구 I. 치패성장에 미치는 수조형태 및 사육밀도의 영향)

  • JEONG Seong-Chae;JEE Young-Ju;SON Pal-Won
    • Journal of Aquaculture
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 1994
  • To find out suitable indoor rearing tank shape and stocking density of the abalone Haliotis discus hannai, young abalones were reared in the square or ellipse shape tanks with various stocking densities and were fed dried sea mustard, Undaria Pinnatifida HARVEY for three years. There were no significant differences between the square rearing tank and the ellipse one in growth rate and survival rate. With regard to vertical design of rearing tanks with three floors, the significant differences were not found among culture floors. However, the growth and survival rates of young abalones from the running water system were significantly higher than those of the abalones from the circulating system (P< 0.05). For the stocking density experiment with 1,000, 1,500 and 2,000 individuals of 20 mm young abalone, there was no significant differences in growth and survival rates among these groups. However, in that of 200-400 individuals of 40 mm abalone and 100-300 individuals of 50 mm abalone, the lower stocking density of young abalone showed the higher growth and survival rates. The lower stocking density and the smaller size of young abalones showed the higher daily feeding rate and feed efficiency.

  • PDF

Bacteriological Study about the Death of Cultured Doctor Fish, Garra rufa in the Aquarium

  • Lee, Ji-Yoon;Gang, Nam-I;You, Jin-Sol;Ko, Chang-Yong;Lee, Ki-Won;Han, Won-Min;Kim, Eunheui
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Since April 2012, doctor fish in the breeding tank and in the quarantine tank in Hanwha Aquaplanet Yeosu Aquarium have been dying, accompanied by diffuse bleeding around the mouth, in the chin, and at the bottom of the abdomen. In this study, the cause of death would be examined through the bacteriological study of doctor fish and the rearing water quality in the aquarium. The water quality and the bacterial counts of the rearing water in the exhibit tank and in the quarantine tank were analyzed once a week, starting from August to November 2014. Water quality was measured based on the following data: temperature was in the range of 24.5~26.8℃, pH at 6.77~7.94, DO at 6.15~8.61 ppm, ammonia at 0~0.93 ppm, nitrite at 0.009~0.075 ppm, and nitrate at 1.1~40.9 ppm. Studies revealed that the differences in these water quality factors were not related to the death of doctor fish. Bacterial counts in the rearing waters of Garra rufa slightly increased to 103~104 CFU/ml, just before the death of the doctor fish. Twelve strains of bacteria were isolated from the dead fish and rearing waters. The isolates were identified as Aeromonas veronii, Citrobacter freundii, Pseudorhodoferax aquiterrae, Shewanella putrefaciens, and Vibrio anguillarum on the basis of 16S rRNA gene sequences. The most dominant species was C. freundii, which showed medium sensitivity to florfenicol and norfloxacin, and was resistant to amoxacillin, doxycycline, oxytetracycline, tetracycline, and trimethoprim. Ten isolates were confirmed to be pathogenic to the doctor fish. Doctor fish infected with C. freundii and S. putrefaciens showed high mortality in the experimental groups. These results indicate that the variation in bacterial numbers in the rearing water was related to the death of doctor fish. C. freundii and S. putrefaciens were directly implicated in causing the death of doctor fish in the aquarium.

Nitrite Removal Characteristics and Application of Bosea sp. Isolated from BFT System Culture Water (BFT 시스템 사육 수에서 분리한 Bosea sp.의 아질산 제거 특성과 활용)

  • Lee, Hye-Jin;Kim, Hyo-Won;Kim, Myung-Hee;Kim, Dae-Jung;Kim, Kwang-Hyun;Bae, Sun-Hye;Lee, Kyu-Tae;Han, Chang-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.378-387
    • /
    • 2017
  • This study was performed to isolate bacteria that could control the nitrite levels in a biofloc technology (BFT) culture tank. Nitrite-eliminating bacteria were isolated from a BFT culture tank rearing goldfish, and the isolated bacterium exhibiting the most potent nitrite eliminating ability was labeled as the "NOBSB1" strain. Sequencing the 16S rRNA revealed that NOBSB1 is a species in the genera Bosea. NOBSB1 had the following characteristics with regard to nitrite removal: (1) it removed nitrite by functioning heterotrophically in the presence of a carbon source (sugars); (2) it eliminated nitrite most effectively within a temperature range of $20-30^{\circ}C$, but its activity decreased at temperatures above $35^{\circ}C$ and below $20^{\circ}C$; (3) it had optimum nitrite removal ability within a pH range of 6.0-8.0; (4) it removed nitrite more effectively under hypoxic than aerobic conditions. NOBSB1 inoculation did not decrease ammonia or nitrate levels, but eliminated nitrite in a BFT culture tank rearing common carp (Cyprinus carpio). After inoculating the NOBSB1 strain in a BFT culture tank, NOBSB1 controlled and sufficiently reduced the nitrite concentration in the tank.

Rearing Olive Flounder Paralichthys olivaceus in a Water Reuse System with Mineral Particles and foam Fractionator (광물미립자와 포말분리장치를 이용한 사육수 재사용시스템에서의 넙치(Paralichthys olivaceus) 사육실험)

  • 민병서;강필애
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.223-230
    • /
    • 2000
  • A rearing experiment of the olive flounder was performed in a set of water-reuse system to test the reusability of the water in culture system with (i) a foam fractionator to separate particles from water and (ii) a culture tank contain mineral particles to filter the metabolic wastes by adsorption and/or decomposition. Two kinds of commercially processed loess particles and a dolomite particle (all 50 ${\mu}$diameter) were tested. The mineral particles were suspended in the culture tank and the water was pumped into the foam fractionator, where the particles were separated and drained out with foam from the system. In a circular culture tank of 4.8 m in diameter with 10 d water, the juvenile olive flounders (23.1 g/fish, 5,555 fish, 128 kg total body weight) were stocked. 90 % of the rearing water was reused and turnover rate of the water in the tank was two times per hour. Water temperature was maintained 17${\pm}$1$^{\circ}C$. At the end of 75 day-experimental rearing, 5,532 flounders, weighing 468 kg, were harvested. An individual flounder grew to 84.6 g of body weight. The final stocking density was 26.0 kg/$m^2$. No diseases were observed during the experiment.

  • PDF

Fish Diseases and Their Control in High Density Culture of Eel (고밀도 뱀장어 양식수조의 질병대책)

  • CHUN Seh Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 1983
  • The main purpose of the present study is to evaluate a revolving plate type biofilter system for mass culture of eel(Anguilla japonica) based on the experimental rearing for 120 days (Oct. 1982-Feb. 1983). Water quality changes, growth efficiency of fish and fish disease treatment were critically evaluated. A revolving plate type biofilter system was designed(Fig. 1). The system consisted of a glass tank (150 l), a revolving plate biofilter and a settling tank(150 l). The biofilter consisted of 60 submerged quadriangular plates ($28{\times}37$ cm) and 30 revolving plates (32 cm diameter) for a total of 19.0 $m^2$ of surface area. The revolving plates were made to rotate 10 time per minute, The total water volume of the rearing system were 300 l, and everyday 1/3 of the total water volume were changed with freshly prepared water. In the rearing system a total of 2 kg of eel (1,500 individuals, mean weight:1.3 g) were reared fed on the pellet feed and the dough feed. The growth efficiency were much better for the pellet feed (FC: 1.79) compared to the dough feed (FC: 3.56). During the experimental rearing water quality control was satisfactory. Total ammonia concentrations were 0.38-0.59 ppm and nitrite concentration were 0.83-1.19 ppm. On the other hand alkalinity decreased from 176ppm just after the water change to 17ppm just before the water change. The low alkaline condition was compensated by the regular change of water. Epidemics of parasitic gill-flocks (Pseudodactvlogylus sp.) was observed, and they were easily eliminated by the treatment of DDVP (1.0 ppm). Trichodina sp. and Costia sp. were observed, and they were also controlled by the treatment of potassium permanganate (4.0 ppm).

  • PDF

State of Aquaculture Management for Optimal Rearing of Eel Anguilla japonica (뱀장어(Anguilla japonica) 적정 사육관리를 위한 양식기술 현황)

  • Son, Maeng-Hyun;Kim, Kang-Woong;Kim, Kyoung-Duck;Kim, Shin-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • This study was conducted to investigate the production, elver stocking, rearing facilities and rearing method of eel culture to determine aquaculture management conditions for optimal rearing of eel Anguilla japonica. The production of eel culture was evaluated by the proportion of eels from the main inland fin fish species production in Korea. Elver stocking was assessed by the elver stocking densities of pond and recirculation culture. Rearing facilities were investigated according to the rearing tank size proportion of the pond and recirculation culture. We selected sample farms by region and by size. We visited sample farms and recorded the number of elvers stock for pond area, size of tanks, feed and feed quantity, and the size and number of harvest eels. The production capacity of Jeollanam-do and Jeollabuk-do were 71.9% and 21.3% respectively. This production quantity represented 93.2% of the total Korean eel production quantity. In Jeollanam-do, there are 236 eel farms, 202 pond farms, and 34 recirculation aquaculture facilities. The elvers' first density data by each aquaculture method revealed that elvers' first density varied more in recirculation system farms, as compared to pond aquaculture. In intensive pond farms, the elvers' first density decreased as the size of farm increased. There was a correlation between the size of tank(x) and the facility of a water wheel for dissolved oxygen in pond culture systems(y=0.022x-0.494; $R^2$=0.860). Another strong correlation was found between the weight of eel(x) and eel density(y) in pond culture systems(y=283.5x-0.27; $R^2$=0.992). Finally, there was a strong correlation between the length of eel(x) and the weight of eel(y) in intensive pond culture(y=0.0005x-3.2783; $R^2$=0.9775). The final survival rate did not differ significantly among pond sizes and culture types.

REARING OF THE LARVAL PRAWN, PENAEUS JAPONICUS BATE (보리새우 Penaeus japonicus Bate의 유생사육에 관하여)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.87-91
    • /
    • 1969
  • Experiments on the rearing of larvae of the prawn, Penaeus japonicus Bate, have been con-ducted by using a large tank A ($3.4\times1.9\times1.0m$) and two small tanks B and C ($1.45\times0.85\times1.0$). 1) Between spawning and the first zoeal stages, no significant elapsed time difference was noticed among the rearing tanks. At about $23^{\circ}C$ of water temperature nearly all of the larvae in the tanks metamorphosed into the first zoeal stage in about 36-48 hours. However the period of time which elapsed between the spawning and post-larval stage showed some differences bet-ween the tanks, i.e., 19-20 days in tank A and 15-17 days in tanks B and C, respectively 2) No difference in body length of the larvae has been observed among the three tanks. 3) The post-larva passed through several molts, one every four or five days, before reaching the young prawn about 36-40 days after spawning. 4) Throughout the zoeal stages the highest mortality was found at the time of molting between the first and second zoeal stages showing about $51.39\%$ in tank A, $50.70\%\;and\;31.91\%$ in tanks B and C, respectively. 5) Total mortality during the duration of the larval stages was around $75\%$ in all the rearing tanks.

  • PDF