In order to determine the prediction possibility of heavy rainfall, a variety of analyses was conducted by using three-dimensional data obtained from Korea Local Analysis and Prediction System (KLAPS) re-analysis data. Strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Heavy rainfall occurred in the cloud system with a thick convective clouds. The moisture convergence, temperature and potential temperature advection showed increase into the heavy rainfall occurrence area. The distribution of integrated liquid water content tended to decrease as rainfall increased and was characterized by accelerated convective instability along with increased buoyant energy. In addition, changes were noted in the various characteristics of instability indices such as K-index (KI), Showalter Stability Index (SSI), and lifted index (LI). The meteorological variables used in the analysis showed clear increases or decreases according to the changes in rainfall amount. These rapid changes as well as the meteorological variables changes are attributed to the surrounding and meteorological conditions. Thus, we verified that heavy rainfall can be predicted according to such increase, decrease, or changes. This study focused on quantitative values and change characteristics of diagnostic variables calculated by using numerical models rather than by focusing on synoptic analysis at the time of the heavy rainfall occurrence, thereby utilizing them as prognostic variables in the study of the predictability of heavy rainfall. These results can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of such precipitation. In the analysis of various case studies of heavy rainfall in the future, our study result can be utilized to show the development of the prediction of severe weather.
Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.
This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.
Kim, Jinyeon;Hwang, Seung-On;Kim, Seong-Su;Oh, Imyong;Ham, Dong-Ju
Atmosphere
/
v.32
no.4
/
pp.381-394
/
2022
The Korea Meteorological Administration (KMA) National Typhoon Center has been officially releasing reanalyzed best tracks for the previous year's northwest Pacific typhoons since 2015. However, while most typhoon researchers are aware of the data released by other institutions, such as the Joint Typhoon Warning Center (JTWC) and the Regional Specialized Meteorological Center (RSMC) Tokyo, they are often unfamiliar with the KMA products. In this technical note, we describe the best track data released by KMA, and the algorithms that are used to generate it. We hope that this will increase the usefulness of the data to typhoon researchers, and help raise awareness of the product. The best track reanalysis process is initiated when the necessary database of observations-which includes satellite, synoptic, ocean, and radar observations-has become complete for the required year. Three categories of best track information-position (track), intensity (maximum sustained winds and central pressure), and size (radii of high-wind areas)-are estimated based on scientific processes. These estimates are then examined by typhoon forecasters and other internal and external experts, and issued as an official product when final approval has been given.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
v.3
no.2
/
pp.67-72
/
2022
Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.
Tropical cyclones frequently occur in the Southwest Pacific Ocean and are considered one of the driving forces for coastal alterations. Therefore, this study investigates the frequency and intensity of tropical cyclonesfrom 2000 to 2021 and their influence on the surface winds and wave conditions around the atoll nation Tuvalu. Cyclone best-track and ERA5 single-level reanalysis data are utilized to analyze the condition of the surface winds, significant wave heights, mean wave direction, and mean wave period. Additionally, the scatterometer-derived wind information was employed to compare wind conditions with the ERA5 data. On average, nine cyclones per year originated here, and the frequency increased to 11 cyclones during the last three years while the intensity decreased by 25 m/s (maximum sustained wind speed). Besides, a total of 14 cyclones were observed around Tuvalu during the period from 2015 to 2021, which showed an increase of 3 cyclones compared to the preceding period of 2001 to 2007. During cyclones, the significant wave height reached the highest 4.8 m near Tuvalu, and the waves propagated in the east-southeast direction during most of the cyclone events (52%). In addition, prolonged swells with a mean wave period of 7 to 11 seconds were generated in the vicinity of Tuvalu, for which coastal alteration can occur. After this preliminary analysis, it was found that the waves generated by cyclones have a crucial impact in altering the coastal area of Tuvalu. In the future, remotely sensed high-resolution satellite data with this wave information will be used to find out the degree of alterations that happened in the coastal area of Tuvalu before and after the cyclone events.
Ha, Ji-Hun;Park, Kun-Woo;Im, Hyo-Hyuk;Cho, Dong-Hee;Kim, Yong-Hyuk
Journal of the Korea Convergence Society
/
v.12
no.10
/
pp.63-70
/
2021
Generating a super-resolution meteological data by using a high-resolution deep neural network can provide precise research and useful real-life services. We propose a new technique of generating improved training data for super-resolution deep neural networks. To generate high-resolution meteorological data with domain specific knowledge, Lambert conformal conic projection and objective analysis were applied based on observation data and ERA5 reanalysis field data of specialized institutions. As a result, temperature and humidity analysis data based on domain specific knowledge showed improved RMSE by up to 42% and 46%, respectively. Next, a super-resolution generative adversarial network (SRGAN) which is one of the aritifial intelligence techniques was used to automate the manual data generation technique using damain specific techniques as described above. Experiments were conducted to generate high-resolution data with 1 km resolution from global model data with 10 km resolution. Finally, the results generated with SRGAN have a higher resoltuion than the global model input data, and showed a similar analysis pattern to the manually generated high-resolution analysis data, but also showed a smooth boundary.
Park, Jinku;Kim, Dae-Won;Jo, Young-Heon;Kim, Deoksu
Korean Journal of Remote Sensing
/
v.34
no.2_1
/
pp.213-225
/
2018
In order to access the accuracy of the gridded daily Advanced Scatterometer (hereafter DASCAT) ocean surface wind data in the surrounding of Korea, the DASCAT was compared with the wind data from buoys. In addition, the reanalysis data for wind at 10 m provided by European Centre for Medium-Range Weather Forecasts (ECMWF, hereafter ECMWF), National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR, hereafter NCEP), Modern Era Retrospective-analysis for Research and Applications-2 (MERRA-2, hereafter MERRA) were compared and analyzed. As a result, the RMSE of DASCAT for the actual wind speed is about 3 m/s. The zonal components of wind of buoys and the DASCAT have strong correlation more than 0.8 and the meridional components of wind them have lower correlation than that of zonal wind and are the lowest in the Yellow Sea (r=0.7). When the actual wind speed is below 10 m/s, the EMCWF has the highest accuracy, followed by DASCAT, MERRA, and NCEP. However, under the wind speed more than 10 m/s, DASCAT shows the highest accuracy. In the nature of error according to the wind direction, when the zonal wind is strong, all dataset has the error of more than $70^{\circ}$ on the average. On the other hand, the RMSE of wind direction was recorded $50^{\circ}$ under the strong meridional winds. ECMWF shows the highest accuracy in these results. The RMSE of the wind speed according to the wind direction varied depending on the actual wind direction. Especially, MERRA has the highest RMSE under the westerly and southerly wind condition, while the NCEP has the highest RMSE under the easterly and northerly wind condition.
This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.
Long time-series gridded data is crucial for the analyses of Earth environmental changes. Climate reanalysis and satellite images are now used as global-scale periodical and quantitative information for the atmosphere and land surface. This paper examines the feasibility of DCT-PLS (penalized least square regression based on discrete cosine transform) for the spatial gap filling of gridded data through the experiments for multiple variables. Because gap-free data is required for an objective comparison of original with gap-filled data, we used LDAPS (Local Data Assimilation and Prediction System) daily data and MODIS (Moderate Resolution Imaging Spectroradiometer) monthly products. In the experiments for relative humidity, wind speed, LST (land surface temperature), and NDVI (normalized difference vegetation index), we made sure that randomly generated gaps were retrieved very similar to the original data. The correlation coefficients were over 0.95 for the four variables. Because the DCT-PLS method does not require ancillary data and can refer to both spatial and temporal information with a fast computation, it can be applied to operative systems for satellite data processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.