• Title/Summary/Keyword: reanalysis data

Search Result 243, Processing Time 0.031 seconds

Studies on the Predictability of Heavy Rainfall Using Prognostic Variables in Numerical Model (모델 예측변수들을 이용한 집중호우 예측 가능성에 관한 연구)

  • Jang, Min;Jee, Joon-Beom;Min, Jae-sik;Lee, Yong-Hee;Chung, Jun-Seok;You, Cheol-Hwan
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.495-508
    • /
    • 2016
  • In order to determine the prediction possibility of heavy rainfall, a variety of analyses was conducted by using three-dimensional data obtained from Korea Local Analysis and Prediction System (KLAPS) re-analysis data. Strong moisture convergence occurring around the time of the heavy rainfall is consistent with the results of previous studies on such continuous production. Heavy rainfall occurred in the cloud system with a thick convective clouds. The moisture convergence, temperature and potential temperature advection showed increase into the heavy rainfall occurrence area. The distribution of integrated liquid water content tended to decrease as rainfall increased and was characterized by accelerated convective instability along with increased buoyant energy. In addition, changes were noted in the various characteristics of instability indices such as K-index (KI), Showalter Stability Index (SSI), and lifted index (LI). The meteorological variables used in the analysis showed clear increases or decreases according to the changes in rainfall amount. These rapid changes as well as the meteorological variables changes are attributed to the surrounding and meteorological conditions. Thus, we verified that heavy rainfall can be predicted according to such increase, decrease, or changes. This study focused on quantitative values and change characteristics of diagnostic variables calculated by using numerical models rather than by focusing on synoptic analysis at the time of the heavy rainfall occurrence, thereby utilizing them as prognostic variables in the study of the predictability of heavy rainfall. These results can contribute to the identification of production and development mechanisms of heavy rainfall and can be used in applied research for prediction of such precipitation. In the analysis of various case studies of heavy rainfall in the future, our study result can be utilized to show the development of the prediction of severe weather.

Estimation of the optimal evapotranspiration by using satellite- and reanalysis model-based evapotranspiration estimations (인공위성과 재분석모델 자료의 다중 증발산 자료를 활용하여 최적 증발산 산정 연구)

  • Baik, Jongjin;Jeong, Jaehwan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.273-280
    • /
    • 2018
  • Accurate estimation of evapotranspiration is mightily important for understanding and analyzing the hydrological cycle. There are various methods for estimating evapotranspiration and each method has its own advantages and limitations. Therefore, it is necessary to develop an optimal evapotranspiration product by combing different evapotranspiration products. In this study, we developed an optimal evapotranspiration by fusing two satellite- and model-based evapotranspiration estimates, including revised remote sensing-based Penman-Monteith (RS-PM) and Modified Satellite-Based Priestley-Taylor (MS-PT) methods, Global Land Data Assimilation System (GLDAS), and Global Land Evaporation Amsterdam Model (GLEAM). The statistical analysis (i.e., correlation coefficients, index of agreement, MAE, and RMSE) of combined evapotranspiration product showed to be improved compared to the individual model results. After confirming the overall results, in future studies, advanced data fusion techniques will be used to obtained improved results.

Derivation of Geostationary Satellite Based Background Temperature and Its Validation with Ground Observation and Geographic Information (정지궤도 기상위성 기반의 지표면 배경온도장 구축 및 지상관측과 지리정보를 활용한 정확도 분석)

  • Choi, Dae Sung;Kim, Jae Hwan;Park, Hyungmin
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.583-598
    • /
    • 2015
  • This paper presents derivation of background temperature from geostationary satellite and its validation based on ground measurements and Geographic Information System (GIS) for future use in weather and surface heat variability. This study only focuses on daily and monthly brightness temperature in 2012. From the analysis of COMS Meteorological Data Processing System (CMDPS) data, we have found an error in cloud distribution of model, which used as a background temperature field, and in examining the spatial homogeneity. Excessive cloudy pixels were reconstructed by statistical reanalysis based on consistency of temperature measurement. The derived Brightness temperature has correlation of 0.95, bias of 0.66 K and RMSE of 4.88 K with ground station measurements. The relation between brightness temperature and both elevation and vegetated land cover were highly anti-correlated during warm season and daytime, but marginally correlated during cold season and nighttime. This result suggests that time varying emissivity data is required to derive land surface temperature.

Algorithms for Determining Korea Meteorological Administration (KMA)'s Official Typhoon Best Tracks in the National Typhoon Center (기상청 국가태풍센터의 태풍 베스트트랙 생산체계 소개)

  • Kim, Jinyeon;Hwang, Seung-On;Kim, Seong-Su;Oh, Imyong;Ham, Dong-Ju
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.381-394
    • /
    • 2022
  • The Korea Meteorological Administration (KMA) National Typhoon Center has been officially releasing reanalyzed best tracks for the previous year's northwest Pacific typhoons since 2015. However, while most typhoon researchers are aware of the data released by other institutions, such as the Joint Typhoon Warning Center (JTWC) and the Regional Specialized Meteorological Center (RSMC) Tokyo, they are often unfamiliar with the KMA products. In this technical note, we describe the best track data released by KMA, and the algorithms that are used to generate it. We hope that this will increase the usefulness of the data to typhoon researchers, and help raise awareness of the product. The best track reanalysis process is initiated when the necessary database of observations-which includes satellite, synoptic, ocean, and radar observations-has become complete for the required year. Three categories of best track information-position (track), intensity (maximum sustained winds and central pressure), and size (radii of high-wind areas)-are estimated based on scientific processes. These estimates are then examined by typhoon forecasters and other internal and external experts, and issued as an official product when final approval has been given.

Bioimage Analyses Using Artificial Intelligence and Future Ecological Research and Education Prospects: A Case Study of the Cichlid Fishes from Lake Malawi Using Deep Learning

  • Joo, Deokjin;You, Jungmin;Won, Yong-Jin
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Ecological research relies on the interpretation of large amounts of visual data obtained from extensive wildlife surveys, but such large-scale image interpretation is costly and time-consuming. Using an artificial intelligence (AI) machine learning model, especially convolution neural networks (CNN), it is possible to streamline these manual tasks on image information and to protect wildlife and record and predict behavior. Ecological research using deep-learning-based object recognition technology includes various research purposes such as identifying, detecting, and identifying species of wild animals, and identification of the location of poachers in real-time. These advances in the application of AI technology can enable efficient management of endangered wildlife, animal detection in various environments, and real-time analysis of image information collected by unmanned aerial vehicles. Furthermore, the need for school education and social use on biodiversity and environmental issues using AI is raised. School education and citizen science related to ecological activities using AI technology can enhance environmental awareness, and strengthen more knowledge and problem-solving skills in science and research processes. Under these prospects, in this paper, we compare the results of our early 2013 study, which automatically identified African cichlid fish species using photographic data of them, with the results of reanalysis by CNN deep learning method. By using PyTorch and PyTorch Lightning frameworks, we achieve an accuracy of 82.54% and an F1-score of 0.77 with minimal programming and data preprocessing effort. This is a significant improvement over the previous our machine learning methods, which required heavy feature engineering costs and had 78% accuracy.

Long-Term Analysis of Tropical Cyclones in the Southwest Pacific and Influences on Tuvalu from 2000 to 2021

  • Sree Juwel Kumar Chowdhury;Chan-Su Yang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.441-458
    • /
    • 2023
  • Tropical cyclones frequently occur in the Southwest Pacific Ocean and are considered one of the driving forces for coastal alterations. Therefore, this study investigates the frequency and intensity of tropical cyclonesfrom 2000 to 2021 and their influence on the surface winds and wave conditions around the atoll nation Tuvalu. Cyclone best-track and ERA5 single-level reanalysis data are utilized to analyze the condition of the surface winds, significant wave heights, mean wave direction, and mean wave period. Additionally, the scatterometer-derived wind information was employed to compare wind conditions with the ERA5 data. On average, nine cyclones per year originated here, and the frequency increased to 11 cyclones during the last three years while the intensity decreased by 25 m/s (maximum sustained wind speed). Besides, a total of 14 cyclones were observed around Tuvalu during the period from 2015 to 2021, which showed an increase of 3 cyclones compared to the preceding period of 2001 to 2007. During cyclones, the significant wave height reached the highest 4.8 m near Tuvalu, and the waves propagated in the east-southeast direction during most of the cyclone events (52%). In addition, prolonged swells with a mean wave period of 7 to 11 seconds were generated in the vicinity of Tuvalu, for which coastal alteration can occur. After this preliminary analysis, it was found that the waves generated by cyclones have a crucial impact in altering the coastal area of Tuvalu. In the future, remotely sensed high-resolution satellite data with this wave information will be used to find out the degree of alterations that happened in the coastal area of Tuvalu before and after the cyclone events.

Convergence of Artificial Intelligence Techniques and Domain Specific Knowledge for Generating Super-Resolution Meteorological Data (기상 자료 초해상화를 위한 인공지능 기술과 기상 전문 지식의 융합)

  • Ha, Ji-Hun;Park, Kun-Woo;Im, Hyo-Hyuk;Cho, Dong-Hee;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2021
  • Generating a super-resolution meteological data by using a high-resolution deep neural network can provide precise research and useful real-life services. We propose a new technique of generating improved training data for super-resolution deep neural networks. To generate high-resolution meteorological data with domain specific knowledge, Lambert conformal conic projection and objective analysis were applied based on observation data and ERA5 reanalysis field data of specialized institutions. As a result, temperature and humidity analysis data based on domain specific knowledge showed improved RMSE by up to 42% and 46%, respectively. Next, a super-resolution generative adversarial network (SRGAN) which is one of the aritifial intelligence techniques was used to automate the manual data generation technique using damain specific techniques as described above. Experiments were conducted to generate high-resolution data with 1 km resolution from global model data with 10 km resolution. Finally, the results generated with SRGAN have a higher resoltuion than the global model input data, and showed a similar analysis pattern to the manually generated high-resolution analysis data, but also showed a smooth boundary.

Accuracy Evaluation of Daily-gridded ASCAT Satellite Data Around the Korean Peninsula (한반도 주변 해역에서의 ASCAT 해상풍 격자 자료의 정확성 평가)

  • Park, Jinku;Kim, Dae-Won;Jo, Young-Heon;Kim, Deoksu
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.213-225
    • /
    • 2018
  • In order to access the accuracy of the gridded daily Advanced Scatterometer (hereafter DASCAT) ocean surface wind data in the surrounding of Korea, the DASCAT was compared with the wind data from buoys. In addition, the reanalysis data for wind at 10 m provided by European Centre for Medium-Range Weather Forecasts (ECMWF, hereafter ECMWF), National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR, hereafter NCEP), Modern Era Retrospective-analysis for Research and Applications-2 (MERRA-2, hereafter MERRA) were compared and analyzed. As a result, the RMSE of DASCAT for the actual wind speed is about 3 m/s. The zonal components of wind of buoys and the DASCAT have strong correlation more than 0.8 and the meridional components of wind them have lower correlation than that of zonal wind and are the lowest in the Yellow Sea (r=0.7). When the actual wind speed is below 10 m/s, the EMCWF has the highest accuracy, followed by DASCAT, MERRA, and NCEP. However, under the wind speed more than 10 m/s, DASCAT shows the highest accuracy. In the nature of error according to the wind direction, when the zonal wind is strong, all dataset has the error of more than $70^{\circ}$ on the average. On the other hand, the RMSE of wind direction was recorded $50^{\circ}$ under the strong meridional winds. ECMWF shows the highest accuracy in these results. The RMSE of the wind speed according to the wind direction varied depending on the actual wind direction. Especially, MERRA has the highest RMSE under the westerly and southerly wind condition, while the NCEP has the highest RMSE under the easterly and northerly wind condition.

Vertical Atmospheric Structure and Sensitivity Experiments of Precipitation Events Using Winter Intensive Observation Data in 2012 (2012년 겨울철 특별관측자료를 이용한 강수현상 시 대기 연직구조와 민감도 실험)

  • Lee, Sang-Min;Sim, Jae-Kwan;Hwang, Yoon-Jeong;Kim, Yeon-Hee;Ha, Jong-Chul;Lee, Yong-Hee;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.187-204
    • /
    • 2013
  • This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.

Evaluation of the DCT-PLS Method for Spatial Gap Filling of Gridded Data (격자자료 결측복원을 위한 DCT-PLS 기법의 활용성 평가)

  • Youn, Youjeong;Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1407-1419
    • /
    • 2020
  • Long time-series gridded data is crucial for the analyses of Earth environmental changes. Climate reanalysis and satellite images are now used as global-scale periodical and quantitative information for the atmosphere and land surface. This paper examines the feasibility of DCT-PLS (penalized least square regression based on discrete cosine transform) for the spatial gap filling of gridded data through the experiments for multiple variables. Because gap-free data is required for an objective comparison of original with gap-filled data, we used LDAPS (Local Data Assimilation and Prediction System) daily data and MODIS (Moderate Resolution Imaging Spectroradiometer) monthly products. In the experiments for relative humidity, wind speed, LST (land surface temperature), and NDVI (normalized difference vegetation index), we made sure that randomly generated gaps were retrieved very similar to the original data. The correlation coefficients were over 0.95 for the four variables. Because the DCT-PLS method does not require ancillary data and can refer to both spatial and temporal information with a fast computation, it can be applied to operative systems for satellite data processing.