• Title/Summary/Keyword: real-time task scheduling

Search Result 206, Processing Time 0.02 seconds

Fault-tolerant Scheduling of Real-time Tasks with Energy Efficiency on Lightly Loaded Multicore Processors

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • In this paper, we propose a fault-tolerant scheduling scheme with energy efficiency for real-time periodic tasks on DVFS-enabled multicore processors. The scheme provides the tolerance of a permanent fault with the primary-backup task model. Also the scheme reduces the energy consumption of real-time tasks with the fully overlapped execution between each primary task and its backup task, whereas most of previous methods tried to minimize the overlapped execution between the two tasks. In order to the leakage energy loss of idle cores, the scheme activates a part of available cores with rarely used cores powered off. Evaluation results show that the proposed scheme saves up to 82% energy consumption of the previous method.

Multicore Real-Time Scheduling to Reduce Inter-Thread Cache Interferences

  • Ding, Yiqiang;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.1
    • /
    • pp.67-80
    • /
    • 2013
  • The worst-case execution time (WCET) of each real-time task in multicore processors with shared caches can be significantly affected by inter-thread cache interferences. The worst-case inter-thread cache interferences are dependent on how tasks are scheduled to run on different cores. Therefore, there is a circular dependence between real-time task scheduling, the worst-case inter-thread cache interferences, and WCET in multicore processors, which is not the case for single-core processors. To address this challenging problem, we present an offline real-time scheduling approach for multicore processors by considering the worst-case inter-thread interferences on shared L2 caches. Our scheduling approach uses a greedy heuristic to generate safe schedules while minimizing the worst-case inter-thread shared L2 cache interferences and WCET. The experimental results demonstrate that the proposed approach can reduce the utilization of the resulting schedule by about 12% on average compared to the cyclic multicore scheduling approaches in our theoretical model. Our evaluation indicates that the enhanced scheduling approach is more likely to generate feasible and safe schedules with stricter timing constraints in multicore real-time systems.

A Reconfigurable Scheduler Model for Supporting Various Real-Time Scheduling Algorithms (다양한 실시간 스케줄링 알고리즘들을 지원하기 위한 재구성 가능한 스케줄러 모델)

  • Shim, Jae-Hong;Song, Jae-Shin;Choi, Kyung-Hee;Park, Seung-Kyu;Jung, Gi-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.201-212
    • /
    • 2002
  • This paper proposes a reconfigurable scheduler model that can support various real-time scheduling algorithms. The proposed model consists of two hierarchical upper and lower components, task scheduler and scheduling framework, respectively. The scheduling framework provides a job dispatcher and software timers. The task scheduler implements an appropriate scheduling algorithm, which supports a specific real-time application, based on the scheduling framework. If system developers observe internal kernel interfaces to communicate between two hierarchical components, they can implement a new scheduling algorithm independent of complex low kernel mechanism. Once a task scheduler is developed, it can be reused in a new real-time system in future. In Real-Time Linux (5), we implemented the proposed scheduling framework and several representative real-time scheduling algorithms. Throughout these implementations, we confirmed that a new scheduling algorithm could be developed independently without updates of complex low kernel modules. In order to confirm efficiency of the proposed model, we measured the performance of representative task schedulers. The results showed that the scheduling overhead of proposed model, which has two separated components, is similar to that of a classic monolithic kernel scheduler.

Kernel Thread Scheduling in Real-Time Linux for Wearable Computers

  • Kang, Dong-Wook;Lee, Woo-Joong;Park, Chan-Ik
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.270-280
    • /
    • 2007
  • In Linux, real-time tasks are supported by separating real-time task priorities from non-real-time task priorities. However, this separation of priority ranges may not be effective when real-time tasks make the system calls that are taken care of by the kernel threads. Thus, Linux is considered a soft real-time system. Moreover, kernel threads are configured to have static priorities for throughputs. The static assignment of priorities to kernel threads causes trouble for real-time tasks when real-time tasks require kernel threads to be invoked to handle the system calls because kernel threads do not discriminate between real-time and non-real-time tasks. We present a dynamic kernel thread scheduling mechanism with weighted average priority inheritance protocol (PIP), a variation of the PIP. The scheduling algorithm assigns proper priorities to kernel threads at runtime by monitoring the activities of user-level real-time tasks. Experimental results show that the algorithms can greatly improve the unexpected execution latency of real-time tasks.

  • PDF

End-to-End Laxity-based Priority Assignment for Distributed Real-Time Systems (분산 실시간 시스템을 위한 양극단 여유도 기반의 우선순위 할당 방법)

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.59-61
    • /
    • 2004
  • Researches about scheduling distributed real-time systems have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. This paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system. It is shown that existing scheduling methods such as Rate Monotonic scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints. So this paper proposes an end-to-end laxity-based priority assignment algorithm which considers the practical laxity of a task and allocates a proper priority to a task.

  • PDF

UbiFOS: A Small Real-Time Operating System for Embedded Systems

  • Ahn, Hee-Joong;Cho, Moon-Haeng;Jung, Myoung-Jo;Kim, Yong-Hee;Kim, Joo-Man;Lee, Cheol-Hoon
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.259-269
    • /
    • 2007
  • The ubiquitous flexible operating system (UbiFOS) is a real-time operating system designed for cost-conscious, low-power, small to medium-sized embedded systems such as cellular phones, MP3 players, and wearable computers. It offers efficient real-time operating system services like multi-task scheduling, memory management, inter-task communication and synchronization, and timers while keeping the kernel size to just a few to tens of kilobytes. For flexibility, UbiFOS uses various task scheduling policies such as cyclic time-slice (round-robin), priority-based preemption with round-robin, priority-based preemptive, and bitmap. When there are less than 64 tasks, bitmap scheduling is the best policy. The scheduling overhead is under 9 ${\mu}s$ on the ARM926EJ processor. UbiFOS also provides the flexibility for user to select from several inter-task communication techniques according to their applications. We ported UbiFOS on the ARM9-based DVD player (20 kB), the Calm16-based MP3 player (under 7 kB), and the ATmega128-based ubiquitous sensor node (under 6 kB). Also, we adopted the dynamic power management (DPM) scheme. Comparative experimental results show that UbiFOS could save energy up to 30% using DPM.

  • PDF

Sustainability in Real-time Scheduling

  • Burns, Alan;Baruah, Sanjoy
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.74-97
    • /
    • 2008
  • A scheduling policy or a schedulability test is defined to be sustainable if any task system determined to be schedulable remains so if it behaves "better" than mandated by its system specifications. We provide a formal definition of sustainability, and subject the concept to systematic analysis in the context of the uniprocessor scheduling of periodic and sporadic task systems. We argue that it is, in general, preferable engineering practice to use sustainable tests if possible, and classify common uniprocessor schedulability tests according to whether they are sustainable or not.

A Study of Real-Time System(RTS) Efficiency in e-Trade (전자무역의 RTS 효율성에 관한 연구)

  • Jeong Boon-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.783-791
    • /
    • 2006
  • In e-Trade, Real-Time System(RTS) plays a very important role. Each task is set with limited time, and appointed regulations must be followed because it can be greatly damaged if it cannot be executed in limited time. In e-Trade, the scheduling possibility techniques generally use periodical tasks; however, it is necessary to study more stable prediction scheduling possibility algorithm by using other task timing conditions and non-periodical task scheduling tasks. This study proposed an algorithm to increase the prediction possibility using individual task utilization rate, and presented scheduling possibility conditions using existing whole task utilization rate and the proposed algorithm.

Performance Evaluation of Real-Time Power-Aware Scheduling Techniques Incorporating Idle Time Distribution Policies (실행 유휴 시간 분배 정책에 따른 실시간 전력 관리 스케줄링 기법의 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1704-1712
    • /
    • 2014
  • The unused Worst-Case Execution Time (WCET) allocated to a real-time task occurs when the actual execution time of the task can be far less than the WCET preassigned to the task for a schedulability test. Any unused WCET allocated to the task can be exploited to reduce the power consumption of battery-powered sensor nodes through real-time power-aware scheduling techniques. From the distribution perspective of the unused WCET, the unused WCET distribution policy is classified into three types: Conservative Unused WCET (CU-WCET), Moderate Unused WCET (MU-WCET), and Aggressive Unused WCET (AU-WCET) distribution policies. We evaluated the performance of real-time power-aware scheduling techniques incorporating each of three unused WCET distribution policies in terms of low power consumption.

Peformance Analysis of Scheduler Selection based Real-time Linux Systems (스케줄러 선택기반의 실시간 리눅스의 성능분석)

  • Kang, Min-Goo
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.71-78
    • /
    • 2007
  • In this paper, an effective task scheduling scheme was proposed for the flexible real time LINUX systems with the selection between EDF(earliest deadline first) and RMS(rate monotonic scheduling). It was known that many task scheduling schemes were analyzed according to the characteristics of scheduling schemes and the guarantee of an earliest deadline scheduler for process utilities.

  • PDF