• 제목/요약/키워드: real-time system testing

검색결과 370건 처리시간 0.038초

Adaptive compensation method for real-time hybrid simulation of train-bridge coupling system

  • Zhou, Hui M.;Zhang, Bo;Shao, Xiao Y.;Tian, Ying P.;Guo, Wei;Gu, Quan;Wang, Tao
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.93-108
    • /
    • 2022
  • Real-time hybrid simulation (RTHS) was applied to investigate the train-bridge interaction of a high-speed railway system, where the railway bridge was selected as the numerical substructure, and the train was physically tested. The interaction between the two substructures was reproduced by a servo-hydraulic shaking table. To accurately reproduce the high-frequency interaction responses ranging from 10-25Hz using the hydraulic shaking table with an inherent delay of 6-50ms, an adaptive time series (ATS) compensation algorithm combined with the linear quadratic Gaussian (LQG) was proposed and implemented in the RTHS. Testing cases considering different train speeds, track irregularities, bridge girder cross-sections, and track settlements featuring a wide range of frequency contents were conducted. The performance of the proposed ATS+LQG delay compensation method was compared to the ATS method and RTHS without any compensation in terms of residual time delays and root mean square errors between commands and responses. The effectiveness of the ATS+LQG method to compensate time delay in RTHS with high-frequency responses was demonstrated and the proposed ATS+LQG method outperformed the ATS method in yielding more accurate responses with less residual time delays.

Vibration Analysis of the Sensor Control Box Applied to a Commercial Brake Chamber Real-time Monitoring System (브레이크 챔버의 실시간 모니터링 시스템에 적용되는 센서 컨트롤 박스의 진동 해석에 관한 연구)

  • Taekju Hwang;Kyungmin Jum;Soonsik Myung;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • 제18권3호
    • /
    • pp.65-69
    • /
    • 2024
  • This study aimed to analyze the structural integrity of a sensor control box, a critical component for real-time monitoring of brake chamber pressure in large commercial vehicles and trailers. We utilized the computational analysis program ANSYS Workbench R2021 based on our testing conditions and vibration test specification KS R1034. Through modal analysis, we identified resonance frequencies within the frequency range of 5 Hz to 100 Hz and compared results in the frequency range of 33 Hz to 67 Hz using harmonic analysis.

Real-time Image Scanning System for Detecting Tunnel Cracks Using Linescan Cameras

  • Jeong, Dong-Hyun;Kim, Young-Rin;Cho, I-Sac;Kim, Eun-Ju;Lee, Kang-Moon;Jin, Kwang-Won;Song, Chang-Geun
    • Journal of Korea Multimedia Society
    • /
    • 제10권6호
    • /
    • pp.726-736
    • /
    • 2007
  • In this paper, real-time image scanning system using linescan cameras is designed. The system is specially designed to diagnose and analyse the conditions of tunnels such as crack widths through the captured images. The system consists of two major parts, the image acquisition system and the image merging system. To save scanned image data into storage media in real-time, the image acquisition system has been designed with two different control and management modules. The control modules are in charge of controlling the hardware device and the management modules handle system resources so that the scanned images are safely saved to the magnetic storage devices. The system can be mounted to various kinds of vehicles. After taking images, the image merging system generates extended images by combining saved images. Several tests are conducted in laboratory as well as in the field. In the laboratory simulation, both systems are tested several times and upgraded. In the field-testing, the image acquisition system is mounted to a specially designed vehicle and images of the interior surface of the tunnel are captured. The system is successfully tested in a real tunnel with a vehicle at the speed of 20 km/h. The captured images of the tunnel condition including cracks are vivid enough for an expert to diagnose the state of the tunnel using images instead of seeing through his/her eyes.

  • PDF

Implementation and Verification of Distance Relay Models for Real Time Digital Simulator (실시간 전력계통 시뮬레이터를 이용한 보호계전모델 개발)

  • Lee, Joo-Hun;Yoon, Yong-Beum;Cha, Seung-Tae;Lee, Jin;Choe, Jong-Woon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제52권7호
    • /
    • pp.393-400
    • /
    • 2003
  • This paper discusses how to implement and verify a software model of the digital relay that can be added to real time digital simulator(RTDS) model library and is then subjected to the same outputs as the actual relay. The software model is stand-alone and can be used with real relays. It is also possible to conduct interactive real-time tests when the system effects of the relay action need to be investigated. The characteristics of mho type and the quadrilateral type, which is commonly used in recently developed relays, are modeled in this paper. Single circuit line and double circuit line system are used for model verification. The transmission lines are each 100 km in length and are modeled as distributed parameter lines but not frequency dependent. The transmission lines in the single circuit system are modeled as ideally transposed line. The mutual coupling data with the parallel line was taken account in the transmission lines for the double circuit system. The main CTs and PTs are included and operated in their linear region during the tests. For the purpose of testing the relay model accuracy the faults have been applied at various points on the protected line. Its accuracy is assessed against theoretical values.

Real-Time Source Classification with an Waveform Parameter Filtering of Acoustic Emission Signals (음향방출 파형 파라미터 필터링 기법을 이용한 실시간 음원 분류)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • 제31권2호
    • /
    • pp.165-173
    • /
    • 2011
  • The acoustic emission(AE) technique is a well established method to carry out structural health monitoring(SHM) of large structures. However, the real-time monitoring of the crack growth in the roller coaster support structures is not easy since the vehicle operation produces very large noise as well as crack growth. In this investigation, we present the waveform parameter filtering method to classify acoustic sources in real-time. This method filtrates only the AE hits by the target acoustic source as passing hits in a specific parameter band. According to various acoustic sources, the waveform parameters were measured and analyzed to verify the present filtering method. Also, the AE system employing the waveform parameter filter was manufactured and applied to the roller coaster support structure in an actual amusement park.

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • 제37권5호
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.

Development of an Internet-based Robot Education System

  • Hong, Soon-Hyuk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.616-621
    • /
    • 2003
  • Until now, many networked robots have been connected to the Internet for the various applications. With these networked robots, very long distance teleoperation can be possible through the Internet. However, the promising area of the Internet-based teleoperation may be distance learning, because of several reasons such as the unpredictable characteristics of the Internet. In robotics class, students learn many theories about robots, but it is hard to perform the actual experiments for all students due to the rack of the real robots and safety problems. Some classes may introduce the virtual robot simulator for students to program the virtual robot and upload their program to operate the real robot through the off-line programming method. However, the students may also visit the laboratory when they want to use the real robot for testing their program. In this paper, we developed an Internet-based robot education system. The developed system was composed of two parts, the robotics class materials and the web-based Java3d robot simulator. That is, this system can provide two services for distance learning to the students through the Internet. The robotics class materials can be provided to the student as the multimedia contents on the web page. As well, the web-based robot simulator as the real experiment tool can help the students get good understanding about certain subject. So, the students can learn the required robotics theories and perform the real experiments from their web browser when they want to study themselves at any time.

  • PDF

A study of the system that enables real-time contact confirmation of probes in OLED panel inspection (OLED Panel 검사 시에 Probe의 실시간 Contact 확인 가능한 시스템에 관한 연구)

  • Hwang, Mi-Sub;Han, Bong-Seok;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Park, Kyu-Bag;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.21-27
    • /
    • 2020
  • Recently, LCD (Liquid Crystal Display) has been replaced by OLDE (Organic Light Emitting Diode) in high resolution display industry. In the process of OLDE production, it inspects defective products by sending a signal using a probe during OLED panel inspection. At this time, the cause of the detection of failure is divided into two. One is the self-defect of the OLED panel and the other is the poor contact occurring in the process of contact between the two. The second case is unknown at the time of testing, which increases the time for retesting. To this end, we made a system that can identify in real time whether the probe is in contact during the inspection. A contact probe unit was designed for the system, and a stage system was implemented. An inspection system was constructed through S / W and circuit configuration for actual inspection. Finally, a system that can check contact and non-contact in real time was constructed.

Development of Camera Autotracking System for Telemanipulator (원격 로봇용 카메라 자동추적시스템 개발에 관한 연구)

  • 윤지섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권9호
    • /
    • pp.2373-2380
    • /
    • 1993
  • This paper addresses the design procedure and testing result of a servo driven pan/tilt device which is capable of tracking arbitrary movement of a specified target object. In order to achieve real-time acquisition of feedback signal, a 2 degree-of freedom non-contact type displacement follower has been employed in stead of vision camera. The performance of the designed system is tested for different target velocities and control gains. The test result shows the satisfactory performance to be adopted as an effective tool for visual transfer in the context of teleoperation.

Real Time Road Lane Detection with RANSAC and HSV Color Transformation

  • Kim, Kwang Baek;Song, Doo Heon
    • Journal of information and communication convergence engineering
    • /
    • 제15권3호
    • /
    • pp.187-192
    • /
    • 2017
  • Autonomous driving vehicle research demands complex road and lane understanding such as lane departure warning, adaptive cruise control, lane keeping and centering, lane change and turn assist, and driving under complex road conditions. A fast and robust road lane detection subsystem is a basic but important building block for this type of research. In this paper, we propose a method that performs road lane detection from black box input. The proposed system applies Random Sample Consensus to find the best model of road lanes passing through divided regions of the input image under HSV color model. HSV color model is chosen since it explicitly separates chromaticity and luminosity and the narrower hue distribution greatly assists in later segmentation of the frames by limiting color saturation. The implemented method was successful in lane detection on real world on-board testing, exhibiting 86.21% accuracy with 4.3% standard deviation in real time.