• 제목/요약/키워드: real-time polymerase reaction (qPCR)

검색결과 149건 처리시간 0.029초

Prevalence and co-infection status of three pathogenic porcine circoviruses (PCV2, PCV3, and PCV4) by a newly established triplex real-time polymerase chain reaction assay

  • Kim, Hye-Ryung;Park, Jonghyun;Kim, Won-Il;Lyoo, Young S.;Park, Choi-Kyu
    • 한국동물위생학회지
    • /
    • 제45권2호
    • /
    • pp.87-99
    • /
    • 2022
  • A novel porcine circovirus 4 (PCV4) was recently emerged in Chinese and Korean pig herds, which provided epidemiological situation where three pathogenic PCVs, PCV2, PCV3, and newly emerged PCV4, could co-infect pig herds in these countries. In this study, a new triplex quantitative real-time polymerase chain reaction (tqPCR) method was developed for the rapid and differential detection of these viruses. The assay specifically amplified each viral capsid gene, whereas no other porcine pathogenic genes were detected. The detection limit of the assay was below 10 copies/µL and the assay showed high repeatability and reproducibility. In the clinical evaluation using 1476 clinical samples from 198 Korean pig farms, the detection rates of PCV2, PCV3 and PCV4 by the tqPCR assay were 13.8%, 25.4%, and 3.8%, respectively, which were 100% agreement with those of previously reported monoplex qPCR assays for PCV2, PCV3, and PCV4, with a κ value (95% CI) of 1 (1.00~1.00). The prevalence of PCV2, PCV3, and PCV4 at the farm levels were 46.5%, 63.6%, and 19.7%, respectively. The co-infection analysis for tested pig farms showed that single infection rates for PCV2, PCV3, and PCV4 were 28.8%, 44.4%, and 9.6%, respectively, the dual infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 12.6%, 3.5%, and 5.1%, respectively, and the triple infection rate for PCV2, PCV3, and PCV4 was 1.5%. These results demonstrate that three pathogenic PCVs are widely spread, and their co-infections are common in Korean pig herds, and the newly developed tqPCR assay will be useful for etiological and epidemiological studies of these pathogenic PCVs.

Development and validation of ultra-fast quantitative real-time PCR method to differentiate between Oncorhynchus keta and Oncorhynchus mykiss

  • Min-Ji Park;Han-Cheol Lee;Ji-Young Yang;Jung-Beom Kim
    • 한국식품저장유통학회지
    • /
    • 제30권3호
    • /
    • pp.383-394
    • /
    • 2023
  • The ultra-fast quantitative real-time polymerase chain reaction (qPCR) assay was developed and validated to differentiate the morphologically similar ones, Oncorhynchus keta and Oncorhynchus mykiss. Species-specific primers were designed for the COI genes of mtDNA. The species-specific primers designed for O. keta and O. mykiss were selectively amplified by O. keta and O. mykiss DNA, respectively. The sensitivity of O. keta and O. mykiss primers was 1 ng/μL. Quantitative testing showed that the results met the 'Guidelines on Standard Procedures for Preparing Analysis Method such as Food' proposed by the Ministry of Food and Drug Safety. The qPCR method developed and validated in this study for identifying O. keta and O. mykiss has advantages such as speed and field applicability. Therefore, this method is expected to help control forgery and alteration of raw materials in the seafood industry.

Pseudomonas syringae pv. tabaci 에서 LuxR-type 전사조절자인 PsyR에 의한 병원성 유전자들의 조절 (A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci)

  • 최연희;이준승;윤소라;백형석
    • 생명과학회지
    • /
    • 제25권2호
    • /
    • pp.136-150
    • /
    • 2015
  • Pseudomonas syringae pv. tabaci 11528은 담배를 숙주로 하여 wildfire disease를 일으키는 식물 병원성 세균이다. P. syringae pv. tabaci psyR deletion mutant를 이용하여 swarming motility, tabtoxin 생산능, siderophore 생산능, AHL 생산능 등의 phenotypic test를 수행하였다. psyR deletion mutant는 wild-type 균주보다 swarming motility가 증가하였고, tabtoxin 생산 또한 증가하였다. 하지만 siderophore와 AHL 생산능은 감소하였고 virulence 또한 지연되었다. 이러한 결과로 PsyR이 QS regulator로 작용한다는 사실과 더불어 병원성 유전자의 조절에도 관여한다는 것을 확인하였다. PsyR이 각각의 병원성 유전자의 발현을 조절하는 regulator들에게 미치는 영향을 전사단계에서 확인하기 위해 fur, gacA, psyI, prhI, prhA, hrpR, hrpA 유전자들을 정량적 real-time PCR (qRT-PCR) 방법으로 확인하였다. 또한 PsyR에 의한 병원성 유전자 조절이 DNA상에 직접적으로 결합하여 일어나는 것인지 아니면 다른 경로를 통해 간접적으로 일어나는 것인지를 확인할 필요가 있어 정제한 PsyR 단백질과 병원성 관련 유전자들의 upstream region 서열을 이용하여 electrophoretic mobility shift assay (EMSA)를 수행한 결과 본 연구에서 선정한 병원성 관련 유전자들이 PsyR에 의해 직접적으로 조절되지는 않는다는 사실을 밝혔다.

Quantitative Real-Time PCR Assay for Detection of Paenibacillus polymyxa Using Membrane-Fusion Protein-Based Primers

  • Cho, Min Seok;Park, Dong Suk;Lee, Jung Won;Chi, Hee Youn;Sohn, Soo-In;Jeon, Bong-Kyun;Ma, Jong-Beom
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1575-1579
    • /
    • 2012
  • Paenibacillus polymyxa is known to be a plant-growth-promoting rhizobacterium. The present study describes a quantitative polymerase chain reaction (qPCR) assay for the specific detection and quantitation of P. polymyxa using a primer pair based on the sequence of a membrane-fusion protein for the amplification of a 268 bp DNA fragment. This study reports that the qPCR-based method is applicable for the rapid and sensitive detection of P. polymyxa and can be used as an alternative method for agricultural soil monitoring.

Development and evaluation of a triplex real-time quantitative reverse transcription-polymerase chain reaction for rapid and differential detection of three feline respiratory viral pathogens

  • Ji-Su Baek;Jong-Min Kim;Hye-Ryung Kim;Ji-Hoon Park;Yeun-Kyung Shin;Hae-Eun Kang;Jung-Hoon Kwon;Won-Jae Lee;Min Jang;Sang-Kwon Lee;Ho-Seong Cho;Yeonsu Oh;Oh-Deog Kwon;Choi-Kyu Park
    • 한국동물위생학회지
    • /
    • 제46권4호
    • /
    • pp.269-281
    • /
    • 2023
  • In this study, a new triplex real-time quantitative reverse transcription polymerase chain reaction (tqRT-PCR) assay was developed for the rapid and differential detection of three feline viral pathogens including feline calicivirus (FCV), feline herpesvirus 1 (FHV-1), and influenza A virus (IAV) in a single reaction. The assay specifically amplified three targeted viral genes with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with intra- and inter-assay coefficients of variation of less than 1%. Based on the diagnostic results of the assay using 120 clinical samples obtained from cats with feline respiratory disease complex (FRDC)-suspected signs, the prevalence of FCV, FHV-1, or IAV was 43.3%, 22.5%, or 0%, respectively, indicating that the diagnostic sensitivity was comparable or superior to those of previously reported monoplex qRT-PCR/qPCR assays. The dual infection rate for FCV and FHV-1 was 8.3%. These results indicate that FCV and FHV-1 are widespread and that co-infection with FCV and FHV-1 frequently occur in the Korean cat population. The developed tqRT-PCR assay will serve as a promising tool for etiological and epidemiological studies of these three bacterial pathogens, and the prevalence data for three feline viruses obtained in this study will contribute to expanding knowledge about the epidemiology of FRDC in the current Korean cat population.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene

  • Jinuk Jeong;Yunseok Oh;Junhyeon Jeon;Dong-Heon Baek;Dong Hee Kim;Kornsorn Srikulnath;Kyudong Han
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.13.1-13.8
    • /
    • 2023
  • Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria 'Porphyromonas gingivalis', and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)-based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis-specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

구제역바이러스 신속진단을 위한 pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) 진단법 (Pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of foot-and-mouth disease virus)

  • 임다래;박유리;박선영;김혜령;박민지;구복경;나진주;유소윤;위성환;전효성;김지정;전보영;이형우;박최규
    • 한국동물위생학회지
    • /
    • 제41권1호
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, we developed a sensitive and specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid visual detection of foot-and-mouth disease virus (FMDV) circulated in Korea. The RT-LAMP was completed in 40 min at $62^{\circ}C$ and the results of the assay were directly detected by naked eye without any detection process. The assay specifically amplified all 7 serotypes of FMDV RNAs but not amplified other viral and cellular nucleic acids. The sensitivity of the RT-LAMP was $10^2$, $10^3$ and $10^3TCID_{50}/mL$ for serotype O, A and Asia 1 FMDV, respectively, which was comparable to conventional reverse transcription polymerase chain reaction (RT-PCR) and relatively lower than that of real time quantitative RT-PCR (qRT-PCR). Clinical evaluation of the RT-LAMP using different serotypes of Korean and foreign FMDV strains showed a 100% (35/35) agreement with the results of the RT-PCR and qRT-PCR. These results indicated that RT-LAMP assay developed in this study could be a valuable diagnostic method for FMDV monitoring and surveillance.

Effect of Tetrodotoxin on the Proliferation and Gene Expression of Human SW620 Colorectal Cancer Cells

  • Bae, Yun-Ho;Kim, Hun;Lee, Sung-Jin
    • 대한의생명과학회지
    • /
    • 제28권1호
    • /
    • pp.42-49
    • /
    • 2022
  • Tetrodotoxin (TTX) is a natural neurotoxin found in several species of puffer fish belonging to Tetraodon fugu genus and has been reported to affect processes such as proliferation, metastasis and invasion of various cancer cells. However, it was not revealed which genes were influenced by these reactions. In this experiment, it was examined in human SW620 colorectal cancer cells. The proliferation of SW620 cells was significantly reduced when treated with 0, 1, 10 and 100 μM TTX for 48 h. It was confirmed using Annexin V-propidium iodide staining that some apoptosis was induced. Differentially expressed genes (DEGs) affecting cell proliferation through RNA sequencing (RNA-seq) were selected. The expression change of DEGs was confirmed by conducting quantitative real-time polymerase chain reaction (qRT-PCR). As a result, the mRNA expression of FOS and WDR48 genes was found to be increased in the 100 μM TTX treatment group compared to the control group. On the other hand, the mRNA expression of ALKBH7, NDUFA13, RIPPLY3 and SELENOM genes was found to be reduced, and in the case of the ALKBH7 gene was identified to show significant differences. This experiment suggests that TTX can be used as an important fundamental data to elucidate the mechanism that inhibits the proliferation of SW620 cells.

Development of a multiplex qRT-PCR assay for detection of African swine fever virus, classical swine fever virus and porcine reproductive and respiratory syndrome virus

  • Chen, Yating;Shi, Kaichuang;Liu, Huixin;Yin, Yanwen;Zhao, Jing;Long, Feng;Lu, Wenjun;Si, Hongbin
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.87.1-87.12
    • /
    • 2021
  • Background: African swine fever virus (ASFV), classical swine fever virus (CSFV), and porcine reproductive and respiratory syndrome virus (PRRSV) are still prevalent in many regions of China. Co-infections make it difficult to distinguish their clinical symptoms and pathological changes. Therefore, a rapid and specific method is needed for the differential detection of these pathogens. Objectives: The aim of this study was to develop a multiplex real-time quantitative reverse transcription polymerase chain reaction (multiplex qRT-PCR) for the simultaneous differential detection of ASFV, CSFV, and PRRSV. Methods: Three pairs of primers and TaqMan probes targeting the ASFV p72 gene, CSFV 5' untranslated region, and PRRSV ORF7 gene were designed. After optimizing the reaction conditions, including the annealing temperature, primer concentration, and probe concentration, multiplex qRT-PCR for simultaneous and differential detection of ASFV, CSFV, and PRRSV was developed. Subsequently, 1,143 clinical samples were detected to verify the practicality of the assay. Results: The multiplex qRT-PCR assay could specifically and simultaneously detect the ASFV, CSFV, and PRRSV with a detection limit of 1.78 × 100 copies for the ASFV, CSFV, and PRRSV, but could not amplify the other major porcine viruses, such as pseudorabies virus, porcine circovirus type 1 (PCV1), PCV2, PCV3, foot-and-mouth disease virus, porcine parvovirus, atypical porcine pestivirus, and Senecavirus A. The assay had good repeatability with coefficients of variation of intra- and inter-assay of less than 1.2%. Finally, the assay was used to detect 1,143 clinical samples to evaluate its practicality in the field. The positive rates of ASFV, CSFV, and PRRSV were 25.63%, 9.36%, and 17.50%, respectively. The co-infection rates of ASFV+CSFV, ASFV+PRRSV, CSFV+PRRSV, and ASFV+CSFV+PRRSV were 2.45%, 2.36%, 1.57%, and 0.17%, respectively. Conclusions: The multiplex qRT-PCR developed in this study could provide a rapid, sensitive, specific diagnostic tool for the simultaneous and differential detection of ASFV, CSFV, and PRRSV.