• Title/Summary/Keyword: real-time patient monitoring

Search Result 113, Processing Time 0.028 seconds

Development of Motion Recognition and Real-time Positioning Technology for Radiotherapy Patients Using Depth Camera and YOLOAddSeg Algorithm (뎁스카메라와 YOLOAddSeg 알고리즘을 이용한 방사선치료환자 미세동작인식 및 실시간 위치보정기술 개발)

  • Ki Yong Park;Gyu Ha Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.

A Mining-based Healthcare Multi-Agent System in Ubiquitous Environments (마이닝 기반 유비쿼터스 헬스케어 멀티에이전트 시스템)

  • Kang, Eun-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2354-2360
    • /
    • 2009
  • Healthcare is a field where ubiquitous computing is most widely used. We propose a mining-based healthcare multi-agent system for ubiquitous computing environments. This proposed scheme select diagnosis patterns using mining in the real-time biosignal data obtained from a patient's body. In addition, we classify them into normal, emergency and be ready for an emergency. This proposed scheme can deal with the enormous quantity of real-time sensing data and performs analysis and comparison between the data of patient's history and the real-time sensory data. We separate Association rule exploration into two data groups: one is the existing enormous quantity of medical history data. The other group is real-time sensory data which is collected from sensors measuring body temperature, blood pressure, pulse. Proposed system has advantage that can handle urgent situation in the far away area from hospital through PDA and mobile device. In addition, by monitoring condition of patient in a real time base, it shortens time and expense and supports medical service efficiently.

A Development of Blood Pressure and Blood Sugar Monitor Using the Bluetooth and Tele-monitoring System (블루투스를 이용한 혈압, 혈당 측정 단말기 제작 및 원격건강관리시스템 개발)

  • Hong, Seung-Beom;Kim, Sung-Jin;Lee, Won-Keun;Lee, Moo-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.80-83
    • /
    • 2008
  • We propose the tele-monitoring system to real-time medical signal system and implemented the blood-pressure and blood-sugar monitoring system with bluetooth communication system. And, it transmits patient's data blood pressure, blood sugar to doctor and doctor sends the result of medical treatment to patient's phone, hand-phone or PDA. We developed the measurer as portable type in order to non-restrained monitor.

  • PDF

A Study on the Implementation of Wireless LAN BSS for patient condition monitoring system (환자 모니터링을 위한 무선 근거리 통신망의 BSS 구현에 관한 연구)

  • Ko, S.I.;Kim, Y.K.;Lew, J.S.;Kim, Y.H.;Ki, S.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.188-192
    • /
    • 1997
  • The purpose of this study are changing wired medical instrument's terminal into wireless and implementing BSS of Wireless Local Area Network. the wireless terminal using frequency hopping spread spectrum in ISM band transfers patients medical information data such as ECG data, Patient Disease Indication Message to AP(or Server) and it also performs that as a response of transmission request in server. we made Clinet-Server network structure support only BSS service and patient's terminal controlled by polling in server. Wireless Terminal will guarantee mobility and give doctors real time monitoring capability in office.

  • PDF

Multi-channel Unconstrained Heart Rate Monitoring System for Exercising Rehabilitation Patients (재활 훈련중인 환자를 위한 다채널 무구속 심박동수 모니터링 시스템)

  • Cho, J.M.;Choi, J.H.;Park, J.H.;Nam, T.W.;Eun, J.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.191-197
    • /
    • 2008
  • This research focused on the development of wireless telemetry system that can monitor heart rates of multiple rehabilitation patients in real time without constraint. The whole system consists of the multiple patient's side devices (PSDs) and one central monitoring system (CMS). The PSD consists of a microphone, amplifier, filter, microcontroller, and RF (Radio Frequency) modem. In addition, the PSD was designed to be wearable and low power consumption. The CMS consists of an RF modem and general PC and it was designed to monitor heart rates from multiple patients simultaneously. The system warns an alarm signal when a patient's heart rate exceeds the pre-set range for each patient. This system can be useful to monitor the heart rate of exercising rehabilitation patients and control the patients condition and the exercising level.

Feasibility Study of EEG-based Real-time Brain Activation Monitoring System (뇌파 기반 실시간 뇌활동 모니터링 시스템의 타당성 조사)

  • Chae, Hui-Je;Im, Chang-Hwan;Lee, Seung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.258-264
    • /
    • 2007
  • Spatiotemporal changes of brain rhythmic activity at a certain frequency have been usually monitored in real time using scalp potential maps of multi-channel electroencephalography(EEG) or magnetic field maps of magnetoencephalography(MEG). In the present study, we investigate if it is possible to implement a real-time brain activity monitoring system which can monitor spatiotemporal changes of cortical rhythmic activity on a subject's cortical surface, neither on a sensor plane nor on a standard brain model, with a high temporal resolution. In the suggested system, a frequency domain inverse operator is preliminarily constructed, considering the individual subject's anatomical information, noise level, and sensor configurations. Spectral current power at each cortical vertex is then calculated for the Fourier transforms of successive sections of continuous data, when a single frequency or particular frequency band is given. An offline study which perfectly simulated the suggested system demonstrates that cortical rhythmic source changes can be monitored at the cortical level with a maximal delay time of about 200 ms, when 18 channel EEG data are analyzed under Pentium4 3.4GHz environment. Two sets of artifact-free, eye closed, resting EEG data acquired from a dementia patient and a normal male subject were used to show the feasibility of the suggested system. Factors influencing the computational delay are investigated and possible applications of the system are discussed as well.

Data-driven Adaptive Safety Monitoring Using Virtual Subjects in Medical Cyber-Physical Systems: A Glucose Control Case Study

  • Chen, Sanjian;Sokolsky, Oleg;Weimer, James;Lee, Insup
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.75-84
    • /
    • 2016
  • Medical cyber-physical systems (MCPS) integrate sensors, actuators, and software to improve patient safety and quality of healthcare. These systems introduce major challenges to safety analysis because the patient's physiology is complex, nonlinear, unobservable, and uncertain. To cope with the challenge that unidentified physiological parameters may exhibit short-term variances in certain clinical scenarios, we propose a novel run-time predictive safety monitoring technique that leverages a maximal model coupled with online training of a computational virtual subject (CVS) set. The proposed monitor predicts safety-critical events at run-time using only clinically available measurements. We apply the technique to a surgical glucose control case study. Evaluation on retrospective real clinical data shows that the algorithm achieves 96% sensitivity with a low average false alarm rate of 0.5 false alarm per surgery.

Rapid Detection and Monitoring Therapeutic Efficacy of Mycobacterium tuberculosis Complex Using a Novel Real-Time Assay

  • Jiang, Li Juan;Wu, Wen Juan;Wu, Hai;Ryang, Son Sik;Zhou, Jian;Wu, Wei;Li, Tao;Guo, Jian;Wang, Hong Hai;Lu, Shui Hua;Li, Yao
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1301-1306
    • /
    • 2012
  • We combined real-time RT-PCR and real-time PCR (R/P) assays using a hydrolysis probe to detect Mycobacterium tuberculosis complex (MTBC)-specific 16S rRNA and its rRNA gene (rDNA). The assay was applied to 28 non-respiratory and 207 respiratory specimens from 218 patients. Total nucleic acids (including RNA and DNA) were extracted from samples, and results were considered positive if the repeat RT-PCR threshold cycle was ${\leq}35$ and the ratio of real-time RT-PCR and real-time PCR load was ${\geq}1.51$. The results were compared with those from existing methods, including smear, culture, and real-time PCR. Following resolution of the discrepant results between R/P assay and culture, the overall sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) of all samples (including non-respiratory and respiratory specimens) were 98.2%, 97.2%, 91.7%, and 99.4%, respectively, for R/P assay, and 83.9%, 89.9%, 72.3%, and 94.7%, respectively, for real-time PCR. Furthermore, the R/P assay of four patient samples showed a higher ratio before treatment than after several days of treatment. We conclude that the R/P assay is a rapid and accurate method for direct detection of MTBC, which can distinguish viable and nonviable MTBC, and thus may guide patient therapy and public health decisions.

An ECG Monitoring and Analysis Method for Ubiquitous Healthcare System in WSN

  • Bhardwaj, Sachin;Lee, Dae-Seok;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The aim of this paper is to design and implement a new ECG signal monitoring and analysis method for the home care of elderly persons or patients, using wireless sensor network (WSN) technology. The wireless technology for home-care purpose gives new possibilities for monitoring of vital parameter with wearable biomedical sensors and will give the patient freedom to be mobile and still be under continuously monitoring. Developed platform for portable real-time analysis of ECG signals can be used as an advanced diagnosis and alarming system. The ECG features are used to detect life-threatening arrhythmias, with an emphasis on the software for analyzing the P-wave, QRS complex, and T-wave in ECG signals at server after receiving data from base station. Based on abnormal ECG activity, the server transfer diagnostic results and alarm conditions to a doctor's PDA. Doctor can diagnose the patients who have survived from arrhythmia diseases.

Surgical Resuscitation of a Patient with Cerebral Herniation Secondary to Massive Hemorrhage in the Basal Ganglia: Ultrasound-monitored Aspiration

  • Jung, Youn-Ho;Park, Jae-Chan;Hamm, In-Suk
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.300-302
    • /
    • 2005
  • The authors report a case of hyperacute, massive hemorrhage in the left basal ganglia with severe midline shift that was treated successfully by the ultrasound-monitored free hand aspiration technique. Every effort was made to shorten time until removal of considerable amount of the hematoma and minimize duration of cerebral herniation, avoiding additional irreversible neurological deficit. A burr hole aspiration technique was preferred to standard craniotomy procedure, and any time-consuming procedures such as stereotactic frame application were abandoned. A burr hole was localized on the basis of computed tomography images simply and quickly with a ruler, and safety of the aspiration procedure was augmented by real-time ultrasound monitoring. Such minimally invasive technique relieved cerebral herniation successfully while avoiding time consumption and the morbidity of major craniotomy procedure. Early resuscitation of the patient with cerebral herniation in this case resulted in excellent recovery of the patient's neurological deficit. The patient's mentality started to improve rapidly and was clear six months after the surgery.